From Object Replication to
Database Replication

Outline

e Motivation
¢ Replication model
e From objects to databases

¢ Deferred update replication

¢ F'inal remarks

© F. Pedone

Motivation

e From object replication...

» Replication in the distributed systems
community

» Processes, non-transactional objects

e...to database replication

» Replication in the database community

» Transactions, databases

© F. Pedone

Motivation

® Object replication is important

» Fault tolerance

File server
Replica #1

Client 1

Client 2

File server
Replica #3

© F. Pedone

Motivation

e Database replication is important

» Fault tolerance

- Client 3
» Performance Database server
Replica #1 ‘
- Client 4
Client 1 &
, Database server |
; | Replica #2
Client 2 ¢
At Client 5

Database server
Replica #3

- Client 6

© F. Pedone

Motivation

* Object vs. database replication (recap)
» Different goals
- Fault tolerance vs. Performance & Fault tolerance

» Different models

- Objects, non-transactional vs. transactions

» Different algorithms

- to a certain extent...

© F. Pedone

Motivation

e Group communication

» Messages addressed to a group of nodes
» Initially used for object replication

» Later used for database replication

node 1 / \
node & ><

node &

point-to-point : -
©F. Pedone COMINUNIication communication

Outline

e Motivation
e Replication model

e From objects to databases
¢ Deferred update replication

¢ F'inal remarks

© F. Pedone

Replication model

e Object model
» Clients: ci, ca,...
» Servers: 81, ..., Sn

» Operations: read and write

- read(x) returns the value of object x

- write(x,v) updates the value of x with v;
returns acknowledg€ement

© F. Pedone

Replication model

® Object consistency

» Consistency criteria

© F. Pedone

- Defines the behavior of object operations
- Simple for single-client-single-server case
- But more complex in the general case

e Multiple clients

e Multiple servers

e Hailures

10

Replication model

» Consistency criteria

- Simple case: single client, single server, no failures

write(x,1) ack(x) read(x) return(l)

client | =

© F. Pedone

11

Replication model

» Consistency criteria

- Multiple clients, multiple servers

write(x,1) ack(x)
Cl .._‘ et e
read(x) return(O) read(x) return(l)
U—

S2 -
© F. Pedone @ 12

Replication model

» Consistency criteria

- Ideally, defines system behavior regardless of
implementation details and the operation semantics

writdgthe folkomtkng execution intuitive to clients?

C1
read(x) return(O) read(x) return(l)
Ca
.
~~~~~ e

8o —

© F. Pedone




Replication model

» Consistency criteria

- Two consistency criteria for objects
(among several others)

 Linearizability

e Sequential consistency

© F. Pedone

14




Replication model

e Linearizability

» A concurrent execution is linearizable if
there is a sequential way to reorder the client
operations such that:

(1) it respects the semantics of the objects, as
determined in their sequential specs

(R) it respects the order of non-overlapping operations
among all clients

© F. Pedone 15




Replication model

e Linearizability
write(x,1) ack(x) read(x) return(l)
o, — s
read(x) return(O)
Cao
sequential
execution

Problem: Does not respect
© F. Pedone the semantics of the object

16




Replication model

e Linearizability
write(x,1) ack(x) read(x) return(l)
o, — s
read(x) return(O)
Cao
sequential
execution

Problem: Does not respect the order
e or non-overlapping operations

17




Replication model

e Linearizability
write(x,1) ack(x) read(x) return(l)
c: [ _
Pea,c:i(X) return(0)
olverlappir;g
read(x) return(0O) read(x) return(l)
sequential =
execution
write(x,1) ack(x)

Linearizable execution!

© F. Pedone

18




Replication model

®* Sequential consistency

» A concurrent execution is sequentially
consistent if there is a sequential way to
reorder the client operations such that:

(1) it respects the semantics of the objects, as
determined in their sequential specs

(R) it respects the order of operations at the client
that issued the operations

© F. Pedone

¥9




Replication model

® Sequential consistency

write(x,1) ack(x) read(x) return(l)
o, — et s
read(x) return(O)
Ca2
sequential
execution

Sequentially consistent!

© F. Pedone

20




Replication model

®* Sequential consistency

write(x,1) ack(x) read(x) return(o\j :
read(x) return(0)
02 Lo e R - o i e e KBl b 2 e M A e S T i e
Seguenbial s 2 s r e
execution

Problem: Does not respect the order
e or non-overlapping operations =




Replication model

® Sequential consistency

write(x,1) ack(x) read(x) return(O)
o, — et s
read(x) return(O)
Ca2
sequential
execution

Problem: Does not respect the order
© F. Pedone or operations at c;

R:2




Replication model

e Database model
» Clients: ci, ca,...
» Servers: 81, ..., Sn
» Operations: read, write, commit and abort

» Transaction: group of read and/or write
operations followed by commit or abort

- ACID properties (see next)

© F. Pedone _3




Replication model

¢ Transaction properties

» Atomicity: Either all transaction operations
are executed or none are executed

» Consistency: A transaction is a correct
transformation of the state

» Isolation: Serializability (next slide)

» Durability: Once a transaction commits, its
changes to the state survive failures

© F. Pedone

4




Replication model

e Serializability (1-copy SR)

» A concurrent execution is serializable if it is
equivalent to a serial execution with the same
transactions

» Two executions are (view) equivalent if:

- Their transactions preserve the same “reads-from”
relationships (t reads x from t’ in both executions)

- They have the same final writes

© F. Pedone 245




Replication model

e Serializability

write(x,1) ack(x) read(x) return(l)
o, — e
read(x) return(O)
Cao
sequential S
execution o

Serializable!

© F. Pedone

206




Replication model

iy W P "’ .." & £ ™ . i 4 »-
ol o S5 v 3 s & Ao s A Pl B LA i e g S s L g, AP W e

e Serializability

write(x,1) ack(x) read(x) return(l)
read(x) return(O)
C2 >
sequential
: B
execution
Serializable!

© F. Pedone _7




Replication model

e Serializability

write(x,1) ack(x) read(x) return(l) A

Ci1

Ca

sequential
execution

Serializable!!!

© F. Pedone

8




Replication model

e Serializability

write(x,1) ack(x) read(y) return(O)
C1
write(y,l) ack(y) read(x) return(0)
C2
sequential
execution

Non serializable!

© F. Pedone

9




Replication model

* Object and database consistency criteria

» Assume single-operation transactions

Objects Database
Strong
Linearizabilit P 0
Y Serializability i
equivalent
Sequential Session L LransaCHCHEE
7 ol 322 have only one
Consistency | Serializability . operation
? Serializability J ~_equivalent
©  iftransactions
' have only one
operation

© F. Pedone Rt 30




Replication model

¢ Serializable, not session-serializable

write(x,1) ack(x) read(x) return(0)
Ci
Transaction 1 Transaction 2
Ca
sequential
execution

© F. Pedone 31




Replication model

® Session-serializable, not strongly
serializable

write(x,1) ack(x) read(x) return(l)

c: —

Transaction 1 read(x) return(0) Transaction &

ce e

Transaction 3

sequential
execution

© F. Pedone 32




Replication model

e Strongly serializable

write(x,1) ack(x) read(x) return(l)

Ci

Transaction 1 read(x) return(l) Transaction

c e

Transaction 3

sequential
execution

© F. Pedone 33




Outline

e Motivation

¢ Replication model

e From objects to databases
e Deferred update replication

¢ F'inal remarks

© F. Pedone

34




From objects to databases

e Fundamentals
» Model considerations
» Generic functional model
® Object replication
» Passive replication (primary-backup)
» Active replication (state-machine replication)

» Multi-primary passive replication

© F. Pedone 35




From objects to databases

e Model considerations
» Client and server processes
» Communication by message passing

» Crash failures only

- No Byzantine failures

© F. Pedone

36




Replication model

¢ Generic functional model

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:
Client Server Execution Agreement Client
Request Coordination Coordination Response
Client
Server 1
Server 2 | A
Server 3 | L

© F. Pedone 37




From objects to databases

e Passive replication
» aka Primary-backup replication

» Fail-stop failure model
- a process follows its spec until it crashes
- a crash is detected by every correct process

- NO process is suspected of having crashed until after
it actually crashes

» Algorithm ensures linearizability

© F. Pedone 38




From objects to databases

» Passive replication algorithm

Phase 1:
Client
Request

Client ' \ '
server 1 plas '

Backup 1
server 2 |

Backup @
server 3 |

© F. Pedone

- Phase 3: Phase 4:
Only “ecution Agreement
primary
executes
requests

Yo

Phase 5:
Client
Coordination Response

2

Backups

apply new
state

39




From objects to databa.ses

¢ Passive replication (Linearizability)

» Perfect failure detection ensures that at most
one primary exists at all times

» A failed primary is detected by the backups

» Eventually one backup replaces failed primary

© F. Pedone 40




From objects to databa.ses

e Active replication
» aka State-machine replication

» Crash failure model
- a process follows its spec until it crashes
- a crash is detected by every correct process

- correct processes may be erroneously suspected

» Algorithm ensures linearizability

© F. Pedone

41




From objects to databa.ses

» Atomic broadcast
- Group communication abstraction
- Primitives: broadcast(m) and deliver(m)
- Properties

e Agreement: Either all servers deliver m or no
server delivers m

 Total order: Any two servers deliver messages m
and m’ in the same order

© F. Pedone 42




From objects to databases

» Atomic broadcast

Application

1001

Client 1 Group
Communication
m7
Client 2
Network

server 1
server 2
server 3 -

© F. Pedone 43




From objects to databases

» Active replication algorithm

Phase 1: Phase 3: Phase 3: -1k X Phase 5:
Client Server Execution Client
Request Coordination Deterministic .~ Response
. ~ execution
Client \ — /
server 1 | i i G § 5 |
All servers
~ execute all
server 2 G requests
sServer 3 G |

© F. Pedone

44




From objects to databases

» Why it works

write(x,1) ack(x) read(x) return(l)
C1 ‘ t
broadcast

operation ¢
“write(x,1)”

read(x) return(0) return(l)

© F. Pedone 45




From objects to databa.ses

e Active and passive replication
» Target fault tolerance only

» Not good for performance

- Active replication:
All servers execute all requests

- Passive replication:
Only one server executes requests

© F. Pedone

46




From objects to databases

e Multi-primary passive replication

» Targets both fault tolerance and performance

» Does not require perfect failure detection
» Same resilience as active replication, but...

» Better performance
- Distinguishes read from write operations

- Only one server executes each request

© F. Pedone

47




From objects to databases

e Multi-primary passive replication

» Read requests
- Broadcast to all servers
- Executed by only one server

- Respomnse is sent to the client

© F. Pedone

48




From objects to databases

e Multi-primary passive replication

» Write requests

Executed by one server

State changes (“diff”) are broadcast to all servers

- If the changes are “compatible” with the previous
installed states, then a new state is installed, and
the result of the request is returned to the client

Otherwise the request is re-executed

© F. Pedone 49




From objects to databases

e Multi-primary passive replication

write(x,1) ack(x)
C1 =
read(x) return(l)
Ca ~ broadcast I
state change
Ugr=1"
S1
x=0 l x=1
x=0 x=1

5 ~ O
© F. Pedone

x=0 x=1

50




From objects to databases

e Multi-primary passive replication

write(x,1)
Ci1
Ca
A state
S1 change
x=0 e
Sa %;;)
x=0
S3 \
© F. Pedone x=0

write(x,2)

- state
change
“X=2” /

ack(x)

2

ack(x)

X=2 x=1

o1




From objects to databases

e Multi-primary passive replication

ack(x)
C1 $ |
ack(x)

Cao

: state
S1 change

x=0 “y=17 x=2 | x=1
52— »

x=0 x=1
S3

F. P
OF Pedone  GEE x=2 x=1

5:




From objects to databa.ses

- If the changes are “compatible” with the previous
installed states, then a new state is installed, and
the result of the request is returned to the client

- Otherwise the request is re-executed

© F. Pedone 53




From objects to databases

e Multi-primary passive replication

- Compatible states @ = @

e Let Si be the state at server N before it executes
operation o, and Si’ the state after a

 Let h=So0-. -S; be the sequence of installed states at
a server N’ when it tries to install the new state Sy’

e Si’is compatible with h if
£ (a) Sj = 5; 0P

- (b) a does not read any variables modified in
Si+1, Si+2, SJ

ceey

© F. Pedone 54




From objects to databases

- Compatible states

write(x,8)
N g

1

(a) N’
Si+1

© F. Pedone

315)




From objects to databases

- Compatible states

—

(b) N’
Sj+1

© F. Pedone

56




From objects to databases

e Multi-primary passive replication

inc(x,1) ack(x)
Ci1 0 |
iIlC(X,Z)/ g ack(x)

Co ! Xc?a,n%e | ] -
S1 i \ . |

X=O (43 ”
S2

x=0
S3

© F. Pedone

x=0 87




From objects to databases

e Multi-primary passive replication
» Optimistic approach

» May or not rely on deterministic execution

- It depends on how re-executions are dealt with

» Installing a new state is cheaper than
executing the request (that creates the state)

© F. Pedone 58




From objects to databases

e Multi-primary passive replication

» Provides both fault tolerance and
performance

» Suitable for database replication!

© F. Pedone

59




Outline

e Motivation
¢ Replication model

e From objects to databases
e Deferred update replication

¢ F'inal remarks

© F. Pedone

60




Deferred update replication

* General idea (1)

Phase 1: Phase 2: Phase 3: Phase 4: Phase S5:

Client Server Execution Agreement Client
Request Coordination Coordination Response
Client | \ |
Server 1 ' H
Server 2
Server 3

© F. Pedone 61




Deferred update replication

* General idea (1)

Phase 1: Phase 3: Phase 5:
Client Execution @ Client
Request Response

Client \ /
server 1 - G i

Server 2

server & -

© F. Pedone

- Communication

Phase 1: Phase 3: '~ —-a4: Phase S:

Client Exec < Client
Request | C er tl ﬁ c a.tl on Response
& Commit/

?

Protocol

6:




Deferred update replication

e The protocol in detail

» Transactions (read-only and update) are
submitted and executed by one database

Server allowed by
- serializability

» At commit time:
- Read-only transactions are committed immediately

- Update transactions are propagated to the other
replicas for certification, and possibly commit

© F. Pedone

63




Deferred update replication

e Read-only transactions

Client 1 read(X) return(l) read(Y) return(2) cominit ok
Server 1 \4@/ \4@/ \@/
server 2

server 3 /G\ /G\ / \
Client 2
read(Y) return(2) read(X) return(l) commit

© F. Pedone 64




Deferred update replication

e Update transactions

Client 1 read(X) return(l) write(¥,3) ack(Y) commit abort

Server 1 \@/ \@/ \‘

Server &2

Server 3 /@\ /@\ e
Client 2 If commit, |

read(Y) return() write(X,3) ack(X) | W;;:;E:g S

© F. Pedone 65




Deferred update replication

¢ Termination based on Atomic Broadcast
» Similar to multi-primary passive replication
» Deterministic certification test

» Lower abort rate than atomic commit based
technique

© F. Pedone 66




Deferred update replication

» Transaction states

Executing(t,s): transitory state

Committing(t,s): transitory state

Committed(t,s): final state

Aborted(t,s): final state

Executmg(t S) —> Comm1tt1ng(t s) ¢

© F. Pedone

tald




Deferred update replication

» Transaction states

Client 1 write(y,3) ack(y) COIIlIIl:lt(t)

R

.....................................................................

Certify
transaction

server 1 F

server 2
Server &

Client 2

© F. Pedone

Executing (t,s1)

Committing (t,s1)

Atomic
:Broadcast
Commit (t,s1)

.
.....................................................................

Transaction termination

68




Deferred update replication

» Transaction states

Client 1 com1<t(t1) ok

server 1 e

Server 2 T

Server & 1
Client 2 /

commit(ts) ok

© F. Pedone

69




Deferred update replication

e Atomic broadcast-based certification

VtVs : Committing(t, s) ~ Committed(t,s) =
Vt' s.t. Committed(t’, s) :

Ly - tvWSH')NRS(@E) =0

t’—t, t’ precedes t: t’ does not
changes made by t’ update any item
could be seen by t that t reads

(i.e,.read by t)

© F. Pedone

70




Deferred update replication

e Atomic broadcast-based certification

» Example

Transaction t: read(x); write(y,-)

Transaction t’: read(y); write(x,-)

t and t’ are concurrent (i.e., neither t—t’ nor t’'—t)

All servers validate t and t’ in the same order

Assume servers validate t and then t’

What transaction(s) commit/abort?

© F. Pedone )




Deferred update replication

¢ Reordering-based certification

» Let t and t’ be two concurrent transactions
- t executes read(x); write(y,-) and
- t’ executes read(y); write(z,-)

» (a) t is delivered and certified before t’
- t passes certification, but
- t’doesnot: RS(H) NWS(t)={y }# I

» (b) t’ is delivered and certified before t

- t’ passes certification and
- t passes certification(!): RS(t) N WS(t*) =

© F. Pedone e




Deferred update replication

» Serialization order of transactions
- Without reordering - With reordering
 Order given by abcast < Either t; followed by ta
e Ex.: t; followed by ta or ta followed by ti1

server 1

server &

server 3

© F. Pedone

73




Deferred update replication

e Reordering-based certification

serialization

order
Reorder List /

(committed transactions)

t1

ta

ts

ta

new delivered
transaction

Condition for committing t (simprisiea:
RS(t) N (WS(t1) U WS(t2) U WS(tz) U WS(ts)) = &

© F. Pedone

4




Deferred update replication

e Reordering-based certification

serialization

order
Reorder List /

(committed transactions) et

transaction

t

Condition for committing t (simprisiea:
RS(t) N (WS(t1) U WS(t2)) = @ and
WS(t) N (RS(t3) U RS(ta)) =@

© F. Pedone 75




Deferred update replication

e Reordering-based certification

VtVs : Committing(t, s) ~ Committed(t,s)=
[Ji, 0 <4< count, s.t. V' € RL, :

vos(tir et WS (R RS = A
A

pos(t') > i = ( A
: WS@E)NRS(H)=0

© F. Pedone

& Aty WSEIR RS = (Z)))

76




Deferred update replication

¢ Generalized reordering

Reorder List

e
grwn

I'

{

L

Reorder List

Reorder List

S R PTY aaT]
[ 8
L,
LE;
"4
L=

Reorder List

¥4

Reorder List

& Betiriai]
-
=
s
o
[

Reorder List

ANGRER [

© F. Pedone

tald




Deferred update replication

¢ Termination based on Generic Broadcast

» Generic broadcast
- Conlilict relation ~ between messages
- Properties

« Agreement: Either all servers deliver m or no
server delivers m

 Total order: If messages m and m’ conflict, then
any two servers deliver them in the same order

© F. Pedone 78




Deferred update replication

» Generic broadcast
- Motivation

 Ordering messages is more expensive than not
ordering messages

 Messages should only be ordered when needed
(as defined by the application)

- Atomic broadcast is a special case of generic
broadcast where all messages must be ordered

© F. Pedone 79




Deferred update replication

» Conflict relation between transactions

- Assume transactions t; and tg don’t conflict

server 1

server &

server 3

© F. Pedone 80




Deferred update replication

» Conflict relation between transactions

- m:t means message m relays transaction t

- if t conflicts with t’ (i.e., m:t ~ m’:t’), then they are
delivered and certified in the same order

CRS(H)NWS() # 0 |
V
m:it~m:t'= | WSE)NRS(E)#0
V
WS(t)NWS(t') £0

© F. Pedone 81




Deferred update replication

» Read-only transactions

- Local execution without certification is not permitted

- Different states of the database could be observed

x=1

write (x,1) 1 tz y=0

x=0

x=0
Server & ;-
write (y,2)

x=0
Server 3 ;-5

read(x);read(y)

© F. Pedone

ta

x=1
y=_2
x=1
y=2

x=1
y=2

8R




Deferred update replication

» Read-only transactions
- Optimistic solution
 Broadcast and certify read-only transactions
- Pessimistic solution
 Pre-declare items to be read (readset)
 Broadcast transaction before execution
 Executed by one server only

e Never aborted

© F. Pedone 83




Outline

e Motivation

¢ Replication model

e From objects to databases

¢ Deferred update replication

e Final remarks

© F. Pedone

84




Final remarks

® Object and database replication
» Different goals

- Fault tolerance X fault tolerance & performance

» Different consistency models

- Linearizability & sequential consistency <
serializability

» Different algorithms

- Primary-backup & active replication <
deferred update replication

© F. Pedone

85




Final remarks

e Consistency models
» Relationship between L/SC and SR

e Replication algorithms

» Unifying framework for object and database
replication

» Multi-primary passive replication

© F. Pedone




Final remarks

¢ Replication and group communication
» A happy union

» Group communication -- atomic broadcast --
leads to modular and efficient protocols
(e.8., fewer aborts than atomic commit)

» Replication has motivated more powerful and
efficient group communication protocols
(e.8., generic and optimistic primitives)

© F. Pedone 87




References

e Chapter 1:
Consistency Models for

Replicated Data
A. Fekete and K. Ramamritham

e Chapter 2:
Replication Techniques for
Availability
R. van Renesse and R. Guerraoui

e Chapter 11:
From Object Replication to

Database Replication
F. Pedone and A. Schiper

© F. Pedone

State-of-the-Art

Survey

LNCS 5959

Bernadette Charron-Bost
Fernando Pedone
André Schiper (Eds.)

Replication

Theory and Practice




