
From Object Replication to
Database Replication

Fernando Pedone
University of Lugano

Switzerland

© F. Pedone

Outline

•Motivation

•Replication model

•From objects to databases

•Deferred update replication

•Final remarks

2

© F. Pedone

Motivation

•From object replication...
‣ Replication in the distributed systems

community

‣ Processes, non-transactional objects

•...to database replication
‣ Replication in the database community

‣ Transactions, databases

3

© F. Pedone

Motivation

•Object replication is important
‣ Fault tolerance

4

Client 1

Client 2
File server

File server
Replica #1

File server
Replica #3

File server
Replica #2

© F. Pedone

Motivation

• Database replication is important
‣ Fault tolerance

‣ Performance

5

Client 1

Client 2

Database server
Replica #1

Database server
Replica #3

Database server
Replica #2

Client 3

Client 5

Client 6

Client 4

© F. Pedone

Motivation

•Object vs. database replication (recap)
‣ Different goals

- Fault tolerance vs. Performance & Fault tolerance

‣ Different models
- Objects, non-transactional vs. transactions

‣ Different algorithms
- to a certain extent...

6

© F. Pedone

Motivation

•Group communication
‣ Messages addressed to a group of nodes

‣ Initially used for object replication

‣ Later used for database replication

7

node 1

node 2

node 3
point-to-point

communication
group

communication

© F. Pedone

Outline

•Motivation

•Replication model

•From objects to databases

•Deferred update replication

•Final remarks

8

© F. Pedone

Replication model

•Object model
‣ Clients: c1, c2,...

‣ Servers: s1, ..., sn

‣ Operations: read and write
- read(x) returns the value of object x

- write(x,v) updates the value of x with v;
returns acknowledgement

9

© F. Pedone

Replication model

•Object consistency
‣ Consistency criteria

- Defines the behavior of object operations

- Simple for single-client-single-server case

- But more complex in the general case

• Multiple clients

• Multiple servers

• Failures

10

© F. Pedone

‣ Consistency criteria
- Simple case: single client, single server, no failures

Replication model

client
write(x,1) ack(x) read(x) return(1)

server

x=0 x=1

11

© F. Pedone

‣ Consistency criteria
- Multiple clients, multiple servers

Replication model

c1

write(x,1) ack(x)

s1

read(x) return(0)

c2

s2

read(x) return(1)

12

x=0

x=0

x=1

x=1

© F. Pedone

‣ Consistency criteria
- Ideally, defines system behavior regardless of

implementation details and the operation semantics

Replication model

c1

write(x,1) ack(x)

read(x) return(0)

c2

read(x) return(1)

s1

s2
13

- Is the following execution intuitive to clients?

© F. Pedone

‣ Consistency criteria
- Two consistency criteria for objects

(among several others)

• Linearizability

• Sequential consistency

Replication model

14

© F. Pedone

Replication model

•Linearizability
‣ A concurrent execution is linearizable if

there is a sequential way to reorder the client
operations such that:
(1) it respects the semantics of the objects, as

determined in their sequential specs

(2) it respects the order of non-overlapping operations
among all clients

15

© F. Pedone

Replication model

•Linearizability

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

sequential
execution

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

Problem: Does not respect
the semantics of the object 16

© F. Pedone

Replication model

•Linearizability

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

sequential
execution

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

Problem: Does not respect the order
or non-overlapping operations 17

© F. Pedone

Replication model

•Linearizability

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

sequential
execution

Linearizable execution!
18

read(x) return(1)

write(x,1) ack(x)

read(x) return(0)
overlapping

© F. Pedone

Replication model

•Sequential consistency
‣ A concurrent execution is sequentially

consistent if there is a sequential way to
reorder the client operations such that:
(1) it respects the semantics of the objects, as

determined in their sequential specs

(2) it respects the order of operations at the client
that issued the operations

19

© F. Pedone

Replication model

•Sequential consistency

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

sequential
execution

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

Sequentially consistent!
20

© F. Pedone

Replication model

•Sequential consistency

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(0)

sequential
execution

write(x,1) ack(x)

read(x) return(0)

read(x) return(0)

Problem: Does not respect the order
or non-overlapping operations 21

© F. Pedone

Replication model

•Sequential consistency

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(0)

sequential
execution

write(x,1) ack(x)

read(x) return(0)

read(x) return(0)

Problem: Does not respect the order
or operations at c1 22

© F. Pedone

Replication model

•Database model
‣ Clients: c1, c2,...

‣ Servers: s1, ..., sn

‣ Operations: read, write, commit and abort

‣ Transaction: group of read and/or write
operations followed by commit or abort
- ACID properties (see next)

23

© F. Pedone

Replication model

•Transaction properties
‣ Atomicity: Either all transaction operations

are executed or none are executed

‣ Consistency: A transaction is a correct
transformation of the state

‣ Isolation: Serializability (next slide)

‣ Durability: Once a transaction commits, its
changes to the state survive failures

24

© F. Pedone

Replication model

•Serializability (1-copy SR)
‣ A concurrent execution is serializable if it is

equivalent to a serial execution with the same
transactions

‣ Two executions are (view) equivalent if:
- Their transactions preserve the same “reads-from”

relationships (t reads x from t’ in both executions)

- They have the same final writes

25

© F. Pedone

Replication model

•Serializability

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

sequential
execution

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

Serializable!
26

© F. Pedone

Replication model

•Serializability

c1

c2

read(x) return(0)

sequential
execution

read(x) return(0)

Serializable!

write(x,1) ack(x) read(x) return(1)

27

write(x,1) ack(x) read(x) return(1)

© F. Pedone

Replication model

•Serializability

c1

c2

read(x) return(0)

sequential
execution

read(x) return(0)

Serializable!!!

write(x,1) ack(x) read(x) return(1)

28

write(x,1) ack(x) read(x) return(1)

© F. Pedone

Replication model

•Serializability

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(y) return(0)

sequential
execution

Non serializable!

write(y,1) ack(y)

29

© F. Pedone

Objects Database

Linearizability

Sequential
Consistency

Serializability

Replication model

•Object and database consistency criteria
‣ Assume single-operation transactions

Session
Serializability

Strong
Serializability

?

30

equivalent
if transactions
have only one

operation

equivalent
if transactions
have only one

operation

© F. Pedone

Replication model

•Serializable, not session-serializable

31

c1

c2

read(x) return(0)

sequential
execution

read(x) return(0)write(x,1) ack(x)write(x,1) ack(x)

Transaction 1 Transaction 2

© F. Pedone

Replication model

•Session-serializable, not strongly
serializable

32

c1

c2

read(x) return(1)

sequential
execution

read(x) return(1)write(x,1) ack(x)write(x,1) ack(x)

Transaction 1 Transaction 2read(x) return(0)

Transaction 3

read(x) return(0)

© F. Pedone

Replication model

•Strongly serializable

33

c1

c2

read(x) return(1)

sequential
execution

read(x) return(1)write(x,1) ack(x)write(x,1) ack(x)

Transaction 1 Transaction 2read(x) return(1)

Transaction 3

read(x) return(1)

© F. Pedone

Outline

•Motivation

•Replication model

•From objects to databases

•Deferred update replication

•Final remarks

34

© F. Pedone

From objects to databases

•Fundamentals
‣ Model considerations

‣ Generic functional model

•Object replication
‣ Passive replication (primary-backup)

‣ Active replication (state-machine replication)

‣ Multi-primary passive replication

35

© F. Pedone

From objects to databases

•Model considerations
‣ Client and server processes

‣ Communication by message passing

‣ Crash failures only
- No Byzantine failures

36

© F. Pedone

Replication model

•Generic functional model

Client

Server 1

Server 2

Server 3

Phase 3:
Execution

Phase 2:
Server
Coordination

Phase 1:
Client
Request

Phase 4:
Agreement
Coordination

Phase 5:
Client
Response

37

© F. Pedone

From objects to databases

•Passive replication
‣ aka Primary-backup replication

‣ Fail-stop failure model
- a process follows its spec until it crashes

- a crash is detected by every correct process

- no process is suspected of having crashed until after
it actually crashes

‣ Algorithm ensures linearizability

38

© F. Pedone

From objects to databases

‣ Passive replication algorithm

Client

Server 1

Server 2

Server 3

Phase 3:
Execution

Phase 2:
Server
Coordination

Phase 1:
Client
Request

Phase 4:
Agreement
Coordination

Phase 5:
Client
Response

Only
primary
executes
requests

Primary

Backup 1

Backup 2

Backups
apply new

state

39

© F. Pedone

From objects to databases

•Passive replication (Linearizability)

‣ Perfect failure detection ensures that at most
one primary exists at all times

‣ A failed primary is detected by the backups

‣ Eventually one backup replaces failed primary

40

© F. Pedone

From objects to databases

•Active replication
‣ aka State-machine replication

‣ Crash failure model
- a process follows its spec until it crashes

- a crash is detected by every correct process

- correct processes may be erroneously suspected

‣ Algorithm ensures linearizability

41

© F. Pedone

From objects to databases

‣ Atomic broadcast
- Group communication abstraction

- Primitives: broadcast(m) and deliver(m)

- Properties

• Agreement: Either all servers deliver m or no
server delivers m

• Total order: Any two servers deliver messages m
and m’ in the same order

42

© F. Pedone

From objects to databases

‣ Atomic broadcast

Client 2

Server 1

Server 2

Server 3

Client 1
m

m’

Architectural
View

Application

Group
Communication

Network
send(m) receive(m)

broadcast(m) deliver(m)

43

© F. Pedone

From objects to databases

‣ Active replication algorithm

Client

Server 1

Server 2

Server 3

Phase 3:
Execution

Phase 2:
Server
Coordination

Phase 1:
Client
Request

Phase 4:
Agreement
Coordination

Phase 5:
Client
ResponseDeterministic

execution

All servers
execute all

requests

44

© F. Pedone

From objects to databases

‣ Why it works

c1

c2

write(x,1) ack(x)

read(x) return(0)

read(x) return(1)

45

s1

s2

s3

x=0

x=0

x=0

x=1

x=1

x=1

return(1)
broadcast
operation

“write(x,1)”

© F. Pedone

From objects to databases

•Active and passive replication
‣ Target fault tolerance only

‣ Not good for performance
- Active replication:

All servers execute all requests

- Passive replication:
Only one server executes requests

46

© F. Pedone

From objects to databases

•Multi-primary passive replication
‣ Targets both fault tolerance and performance

‣ Does not require perfect failure detection

‣ Same resilience as active replication, but...

‣ Better performance
- Distinguishes read from write operations

- Only one server executes each request

47

© F. Pedone

From objects to databases

•Multi-primary passive replication
‣ Read requests

- Broadcast to all servers

- Executed by only one server

- Response is sent to the client

48

© F. Pedone

From objects to databases

•Multi-primary passive replication
‣ Write requests

- Executed by one server

- State changes (“diff”) are broadcast to all servers

- If the changes are “compatible” with the previous
installed states, then a new state is installed, and
the result of the request is returned to the client

- Otherwise the request is re-executed

49

© F. Pedone

From objects to databases

•Multi-primary passive replication

c1

c2

50

s1

s2

s3

x=0

x=0

x=0

write(x,1) ack(x)

x=1

x=1

x=1

broadcast
state change

“x=1”

read(x) return(1)

© F. Pedone

From objects to databases

•Multi-primary passive replication

c1

c2

51

s1

s2

s3

x=0

x=0

x=0

write(x,1) ack(x)

x=1

x=1

state
change
“x=1”

x=1

write(x,2) ack(x)state
change
“x=2”

x=2

x=2

x=2

© F. Pedone

From objects to databases

•Multi-primary passive replication

c1

c2

52

s1

s2

s3

x=0

x=0

x=0

inc(x,1) ack(x)

x=1

x=1

state
change
“x=1”

x=1

inc(x,2) ack(x)state
change
“x=2”

x=2

x=2

x=2

© F. Pedone

From objects to databases

•Multi-primary passive replication
‣ Write requests

- Executed by one server

- State changes (“diff”) are broadcast to all servers

- If the changes are “compatible” with the previous
installed states, then a new state is installed, and
the result of the request is returned to the client

- Otherwise the request is re-executed

53

© F. Pedone

From objects to databases

•Multi-primary passive replication
- Compatible states

• Let Si be the state at server N before it executes
operation α, and Si’ the state after α

• Let h=S0°...°Sj be the sequence of installed states at
a server N’ when it tries to install the new state Si’

• Si’ is compatible with h if

- (a) Sj = Si or

- (b) α does not read any variables modified in
Si+1, Si+2, ..., Sj

54

Si’Si
α

© F. Pedone

From objects to databases

- Compatible states

55

N
x=1
y=2
z=3

Si

x=8
y=2
z=3

Si’

write(x,8)

x=8
y=2
z=3

Si+1

N’
x=1
y=2
z=3

Si

(a)

© F. Pedone

From objects to databases

- Compatible states

56

x=1
y=3
z=3

Si+1

x=1
y=3
z=5

Sj

x=8
y=3
z=5

Sj+1

write(y,3) write(z,5)x=1
y=2
z=3

Si

N’(b)

N
x=1
y=2
z=3

Si

x=8
y=2
z=3

Si’

write(x,8)

© F. Pedone

From objects to databases

•Multi-primary passive replication

57

x=3

x=3

x=3

c1

c2

s1

s2

s3

x=0

x=0

x=0

inc(x,1) ack(x)

inc(x,2) ack(x)

state
change
“x=1”

state
change
“x=2”

x=2

x=2

x=2

© F. Pedone

From objects to databases

•Multi-primary passive replication
‣ Optimistic approach

‣ May or not rely on deterministic execution
- It depends on how re-executions are dealt with

‣ Installing a new state is cheaper than
executing the request (that creates the state)

58

© F. Pedone

From objects to databases

•Multi-primary passive replication
‣ Provides both fault tolerance and

performance

‣ Suitable for database replication!

59

© F. Pedone

Outline

•Motivation

•Replication model

•From objects to databases

•Deferred update replication

•Final remarks

60

© F. Pedone

Deferred update replication

•General idea (I)

Client

Server 1

Server 2

Server 3

Phase 3:
Execution

Phase 2:
Server
Coordination

Phase 1:
Client
Request

Phase 4:
Agreement
Coordination

Phase 5:
Client
Response

61

© F. Pedone

Deferred update replication

•General idea (II)

Client

Server 1

Server 2

Server 3

Phase 1:
Client
Request

Phase 4:
Agreement
Coordination

Phase 3:
Execution

Phase 5:
Client
Response . . .

Phase 1:
Client
Request

Phase 3:
Execution

Phase 5:
Client
Response

Communication
Protocol

Certification
& Commit/

Abort

62

© F. Pedone

Deferred update replication

•The protocol in detail
‣ Transactions (read-only and update) are

submitted and executed by one database
server

‣ At commit time:
- Read-only transactions are committed immediately

- Update transactions are propagated to the other
replicas for certification, and possibly commit

63

allowed by
serializability

© F. Pedone

Deferred update replication

•Read-only transactions

Client 1

Server 1

Server 2

Server 3

Client 2

read(X) return(1) read(Y) return(2) commit ok

read(Y) return(2) read(X) return(1) commit ok

64

© F. Pedone

Deferred update replication

•Update transactions

Client 1

Server 1

Server 2

Server 3

Client 2

read(X) return(1) write(Y,3) ack(Y) commit

ok /
abort

read(Y) return(2) write(X,3) ack(X) . . .
If commit,
writes are

applied

65

© F. Pedone

Deferred update replication

•Termination based on Atomic Broadcast
‣ Similar to multi-primary passive replication

‣ Deterministic certification test

‣ Lower abort rate than atomic commit based
technique

66

© F. Pedone

Deferred update replication

‣ Transaction states
- Executing(t,s): transitory state

- Committing(t,s): transitory state

- Committed(t,s): final state

- Aborted(t,s): final state

Committing(t,s)Executing(t,s)

Aborted(t,s)

Committed(t,s)

77

© F. Pedone

Deferred update replication

‣ Transaction states

Client 1

Server 1

Server 2

Server 3

Client 2

write(y,3) ack(y)

68

Executing(t,s1)

commit(t) ok

Commit(t,s1)

Transaction termination

Committing(t,s1)

Certify
transaction

Atomic
Broadcast

© F. Pedone

Deferred update replication

‣ Transaction states

Client 1

Server 1

Server 2

Server 3

Client 2

69

commit(t1)

commit(t2)

ok

ok

© F. Pedone

Deferred update replication

•Atomic broadcast-based certification

1.4 Deferred update database replication 9

therefore, all servers reach the same outcome, committed or aborted, without
further communication [1, 8].

When a server s delivers t’s readset, writeset, and updates, Committing(t, s)
holds. Server s certifies transactions in the order they are delivered. To certify
t, server s checks whether each transaction it knows about in the committed
state either precedes t or does not have a writeset that intersects t’s readset.
If one of these conditions holds, s locally commits t. We define the condition
for the transition from the committing state to the committed state more
formally as follows:

∀t∀s : Committing(t, s) ! Committed(t, s) ≡



∀t′ s.t. Committed(t′, s) :

t′ → t ∨WS(t′) ∩RS(t) = ∅



 (1.3)

If transaction t passes to the committed state at s, its updates should be
applied to the database following the order imposed by the atomic broadcast
primitive, that is, if t is delivered before t′ and both pass the certification
test, then t’s updates should be applied to the database before those of t′.

Intuitively, condition 1.3 checks whether transactions can be serialized
following their delivery order. Let t and t′ be two transactions such that t′

is delivered and committed before t. There are two cases in which t will pass
certification: (i) t′ committed before t started its execution, in which case any
modifications made by t′ would be seen by t during its execution, or (ii) t′

does not update any data item read by t, in which case it does not matter if
t′ committed before t started.

Differently from condition 1.1 (see Section 1.4.2), condition 1.3 does not
require checking write-write conflicts. Termination based on an atomic broad-
cast primitive requires the writes of transactions that passed certification to
be processed by all replicas according to the delivery order. Therefore, all
servers will process the writes of successfully certified transactions in the
same order and end up in the same state after committing each transaction,
even though two or more committing transactions update the same data item.

Notice that many other database replication protocols based on atomic
broadcast have been proposed. The reader is referred to Chapters ?? and ??
for a detailed description of some of these protocols.

1.4.4 Reordering-based termination

Reordering-based termination is an extension of atomic broadcast-based ter-
mination. The idea is to dynamically build a serial order of transactions that
does not necessarily follow the order in which these transactions are delivered

70

t’→t, t’ precedes t:
changes made by t’
could be seen by t

(i.e,. read by t)

t’ does not
update any item

that t reads

© F. Pedone

Deferred update replication

•Atomic broadcast-based certification
‣ Example

- Transaction t: read(x); write(y,-)

- Transaction t’: read(y); write(x,-)

- t and t’ are concurrent (i.e., neither t→t’ nor t’→t)

- All servers validate t and t’ in the same order

- Assume servers validate t and then t’

- What transaction(s) commit/abort?

71

© F. Pedone

Deferred update replication

•Reordering-based certification
‣ Let t and t’ be two concurrent transactions

- t executes read(x); write(y,-) and
- t’ executes read(y); write(z,-)

‣ (a) t is delivered and certified before t’
- t passes certification, but
- t’ does not: RS(t’) ∩ WS(t) = { y } ≠ ∅

‣ (b) t’ is delivered and certified before t
- t’ passes certification and
- t passes certification(!): RS(t) ∩ WS(t’) = ∅

72

© F. Pedone

Deferred update replication

‣ Serialization order of transactions
- Without reordering

• Order given by abcast

• Ex.: t1 followed by t2

Server 1

Server 2

Server 3

73

t1 t2

- With reordering

• Either t1 followed by t2

or t2 followed by t1

© F. Pedone

Deferred update replication

•Reordering-based certification

74

tt1 t2 t3 t4

Reorder List
(committed transactions) new delivered

transaction

serialization
order

Condition for committing t (simplified):
RS(t) ∩ (WS(t1) ∪ WS(t2) ∪ WS(t3) ∪ WS(t4)) = ∅

© F. Pedone

Deferred update replication

•Reordering-based certification

75

tt1 t2 t3 t4

Reorder List
(committed transactions) new delivered

transaction

serialization
order

Condition for committing t (simplified):
RS(t) ∩ (WS(t1) ∪ WS(t2)) = ∅ and
WS(t) ∩ (RS(t3) ∪ RS(t4)) = ∅

© F. Pedone

Deferred update replication

•Reordering-based certification

10 1 From object replication to database replication

and, in doing so, reduce the number of transactions that fail certification [8].
We illustrate the idea with an example. Assume two concurrent transactions,
t and t′ such that t reads data item x and updates y, and t′ reads y and
updates z. There are two cases to consider: (a) If t is delivered before t′, then
t will pass certification but t′ will fail since WS(t) ∩ RS(t′) = {y}; (b) If t′

is delivered before t, then both transactions will pass the certification test.
The reordering technique reconsiders the order in which transactions are cer-
tified to avoid aborts. In the example, even if t is delivered before t′, the
certification process will reverse their order so that both can commit.

In order to implement the reordering technique, certification must distin-
guish between committed transactions already applied to the database and
committed transactions in the R e o r d e r L i s t. The Reorder List contains com-
mitted transactions that have not been seen by transactions in execution since
their relative order may change. The number of transactions in the Reorder
List is limited by a predetermined threshold, the R e o r d e r F a c t o r. Whenever
the Reorder Factor is reached, one transaction in the Reorder List is removed
and its updates are applied to the database.

Let RLs = t0; t1; . . . ; tcount−1 be the Reorder List at server s containing
count transactions and pos(x) be a function that returns the position of
transaction x in RLs. We represent the condition for the state transition of
transaction t from the committing state to the committed state more formally
as follows:

∀t∀s : Committing(t, s) ! Committed(t, s)≡




∃i, 0 ≤ i < count, s.t. ∀t′ ∈ RLs :

pos(t′) < i ⇒ t′ → t ∨WS(t′) ∩RS(t) = ∅ ∧
∧

pos(t′) ≥ i ⇒




(t′ -→ t ∨WS(t′) ∩RS(t) = ∅)

∧
WS(t) ∩RS(t′) = ∅









(1.4)

If t passes the certification test, it is included in RLs at position i, which
means that transactions in positions in [i .. count−1] are rightshifted. If more
than one position satisfies the condition in equation 1.4, then to ensure that
all servers apply transactions to the database in the same order, a deter-
ministic procedure has to be used to choose the insertion position (e.g., the
rightmost position in RLs). If after including t in RLs the list overflows,
the leftmost transaction in the list, t0, is applied to the database and the
remaining transactions are leftshifted.

76

© F. Pedone

•Generalized reordering

t4

Reorder List

t3t2 t1t

Deferred update replication

77

t1

Reorder List

t2 t3 t4

t1

Reorder List

t2 t3 t4

t1

Reorder List

t2 t4t3

t1

Reorder List

t4t2 t3

t4

Reorder List

t1 t2 t3

t

t

t

t

t

Abort t?

© F. Pedone

Deferred update replication

•Termination based on Generic Broadcast
‣ Generic broadcast

- Conflict relation ∼ between messages

- Properties

• Agreement: Either all servers deliver m or no
server delivers m

• Total order: If messages m and m’ conflict, then
any two servers deliver them in the same order

78

© F. Pedone

Deferred update replication

‣ Generic broadcast
- Motivation

• Ordering messages is more expensive than not
ordering messages

• Messages should only be ordered when needed
(as defined by the application)

- Atomic broadcast is a special case of generic
broadcast where all messages must be ordered

79

© F. Pedone

Deferred update replication

‣ Conflict relation between transactions
- Assume transactions t1 and t2 don’t conflict

80

Server 1

Server 2

Server 3

t1

t2

t1

t1

t2

t2

© F. Pedone

Deferred update replication

‣ Conflict relation between transactions
- m:t means message m relays transaction t

- if t conflicts with t’ (i.e., m:t ∼ m’:t’), then they are
delivered and certified in the same order

81

216 F. Pedone and A. Schiper

t in RLs the list overflows, the leftmost transaction in the list, t0, is applied to the
database and the remaining transactions are leftshifted.

11.4.5 Generic Broadcast-Based Termination

We show now that the ordering imposed by atomic broadcast is not always needed.
Consider the termination of two transactions t and t ′ with non-intersecting readsets
and writesets. In such a case, both t and t ′ will pass the certification test and be
committed, regardless of the order in which they are delivered. This shows that
atomic broadcast is sometimes too strong, and can be favorably replaced by generic
broadcast (see Chapter 3). Generic broadcast is similar to atomic broadcast, with the
exception that applications can define order constraints on the delivery of messages:
two messages are ordered only if they conflict, where the conflict relation is defined
by the application semantics.

Based on the example above, one could define the following conflict relation ∼
among messages, where m : t means that message m relays transaction t:

m : t ∼ m′ : t ′ ≡





RS(t)∩WS(t ′) %= /0
∨

WS(t)∩RS(t ′) %= /0
∨

WS(t)∩WS(t ′) %= /0




(11.5)

Notice that the conflict relation ∼ should account for write-write conflicts to make
sure that transactions that update common data items are ordered, preventing the
case in which two servers end up in different states after applying such transactions
in different orders.

Surprisingly, although ∼ provides an adequate ordering for the termination of
update transactions in the deferred update technique, read-only transactions may
violate serializability, due to the fact that their execution is local to a server. We
illustrate the problem with an execution with two update transactions, tx and ty, and
two read-only transactions, qi and q j. Transaction tx modifies data item x and ty
modifies data item y; transactions qi and q j both read x and y. Since tx and ty do
not execute conflicting operations, assume they are delivered in different orders by
different servers, as follows:

• Server si delivers and commits tx, then executes qi, and finally delivers and com-
mits ty;

• Server s j delivers and commits ty, then executes q j, and finally delivers and com-
mits tx.

The execution is non-serializable since for qi, tx precedes ty, and for q j, ty precedes
tx. Therefore, termination based on generic broadcast with conflict relation ∼ pre-
vents local execution of read-only transactions. We briefly describe two solutions,
one optimistic and one pessimistic, to allow partial order delivery of transactions
using the conflict relation ∼ together with the execution of read-only transactions.

© F. Pedone

Deferred update replication

‣ Read-only transactions
- Local execution without certification is not permitted

- Different states of the database could be observed

82

Server 1

Server 2

Server 3

t1

t2

t1

t1

t2

t2write(x,1)

write(y,2)

x=0
y=0

x=0
y=0

x=0
y=0

x=1
y=2

x=1
y=2

x=1
y=2

t3

t4
read(x);read(y)

x=1
y=0

x=0
y=2

© F. Pedone

Deferred update replication

‣ Read-only transactions
- Optimistic solution

• Broadcast and certify read-only transactions

- Pessimistic solution

• Pre-declare items to be read (readset)

• Broadcast transaction before execution

• Executed by one server only

• Never aborted

83

© F. Pedone

Outline

•Motivation

•Replication model

•From objects to databases

•Deferred update replication

•Final remarks

84

© F. Pedone

Final remarks

•Object and database replication
‣ Different goals

- Fault tolerance × fault tolerance & performance

‣ Different consistency models
- Linearizability & sequential consistency ×

serializability

‣ Different algorithms
- Primary-backup & active replication ×

deferred update replication

85

© F. Pedone

Final remarks

•Consistency models
‣ Relationship between L/SC and SR

•Replication algorithms
‣ Unifying framework for object and database

replication

‣ Multi-primary passive replication

86

© F. Pedone

Final remarks

•Replication and group communication
‣ A happy union

‣ Group communication -- atomic broadcast --
leads to modular and efficient protocols
(e.g., fewer aborts than atomic commit)

‣ Replication has motivated more powerful and
efficient group communication protocols
(e.g., generic and optimistic primitives)

87

© F. Pedone

References

•Chapter 1:
Consistency Models for
Replicated Data
A. Fekete and K. Ramamritham

•Chapter 2:
Replication Techniques for
Availability
R. van Renesse and R. Guerraoui

•Chapter 11:
From Object Replication to
Database Replication
F. Pedone and A. Schiper

88

