
The right solution to a nearby problem?
Or a nearby solution to the right problem?

OPTIMIZATION

HOW TO GET IDEAS

 Chase the high-hanging fruit.

 Try to make stuff really work.

 Look for things that confuse/annoy you.

 And occasionally you’ll get a good idea.

 Write about it well.

2

COMPUTER VISION AS OPTIMIZATION

 Computing PCA, LDA,

 Clustering, Gaussian mixture fitting,

 Sometimes the optimization is easy...

 ...sometimes it’s hard

 Sometimes the hard problem is the one you must
solve

GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓

CLASSES OF FUNCTIONS

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓

quadratic convex single-
extremum

multi-
extremum

noisy horrible

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

>> print -dmeta

EXAMPLE

>> print –dpdf % then go to pdf and paste

EXAMPLE

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6])
>> print –dpdf % then go to pdf and paste

switch to matlab…

ALTERNATION

Easy Hard

WHAT TO DO?

 Ignore the hard ones

 If you search, you’ll find plenty of easy examples

 But your customers won’t…

 Or update more than one coordinate at once

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

-5 0 5 10 15
-5

0

5

10

15

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

 Note that convergence
proofs are available for
both of the above

 But so what?

AND ON A HARD PROBLEM

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 Avoids “undoing”
previous work

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 And avoids “undoing”
previous work

 101 iterations on
this problem

but we can do better…

USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
 min
𝛿
 𝑓 𝑥 + 𝛿

 But hang on, that’s the same problem we were
trying to solve?

USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
 min
𝛿
 𝑓 𝑥 + 𝛿

≈ min
𝛿
 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 12𝛿

⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 How does it look?

 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹

[derive]

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹

𝜹 = −𝐻−1𝑔

IS THAT A GOOD IDEA?

demo_taylor_2d(0, 'newton', 'rosenbrock')

demo_taylor_2d(1, 'newton', 'rosenbrock')

demo_taylor_2d(1, 'newton', ‘sqrt_rosenbrock')

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Updates:
𝜹Newton = −𝐻

−1𝑔

𝜹GradientDescent = −𝜆𝑔

USE SECOND DERIVATIVES…

 Updates:
𝜹Newton = −𝐻

−1𝑔
𝜹GradientDescent = −𝜆𝑔

 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆

−1𝐼𝑑
−1𝑔

 = −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔

 𝜆 small ⇒conservative gradient step

 𝜆 large ⇒Newton step

1ST DERIVATIVES AGAIN

Levenberg-Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 where 𝑓𝑖(𝑥) are
 zero-mean

 small at the optimum

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 𝛻𝑓 𝑥 =

 𝛻𝛻⊤𝑓 𝑥 =

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

𝛻𝑓 𝑥 = 2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝑖

𝛻𝛻⊤𝑓 𝑥 = 2 𝑓𝑖 𝑥 𝛻𝛻
⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻

⊤𝑓𝑖 𝑥

𝑖

CONCLUSION: YMMV

CONCLUSION: YMMV

GIRAFFE

500 runs

CONCLUSION: YMMV

FACE

1000 runs

DINOSAUR

1000 runs

GIRAFFE

500 runs

Truth B𝒖T

 On many problems,
alternation is just fine
 Indeed always start with a

couple of alternation steps

 Computing 2nd derivatives is
a pain
 anyone with compiler/parser

experience please contact me.

 Just alternation is fine
 Unless you’re willing to

problem-select

 Alternation has a
convergence guarantee

 Inverting the Hessian is
always 𝑂(𝑛3)

TRUTH AND B𝑢T [∃𝑢 ∈ H, I, L, S,T,U 6]

There is a universal optimizer

