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The right solution to a nearby problem?
Or a nearby solution to the right problem?

OPTIMIZATION -



= Chase the high-hanging fruit.
= Try to make stuff really work.
= Look for things that confuse/annoy you.

- Alex Kipman
‘ "The greatest danger for most of us is not that our aim is too high and we miss
it, but that it is too low and we reach it" -- Michelangelo

3 - Like - Comment

= Write about it well.

HOW TO GET IDEAS

Microsoft -



= Computing PCA, LDA, ....
= Clustering, Gaussian mixture fitting, ....

= Sometimes the optimization is easy...
...sometimes it's hard

= Sometimes the hard problem is the one you must
solve

COMPUTER VISION AS OPTIMIZATION Micresoft



Given function
f(x):R% > R,

Devise strategies for finding x which minimizes f

GOAL

Microsoft



Given function
f(x):R% > R
Devise strategies for finding x which minimizes f
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CLASSES OF FUNCTIONS
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>> print —dpdf % then go to pdf and paste

EXAMPLE

Microsoft



>> set(gcf, 'paperUnits’, 'centimeters', 'paperposition’, [1 1 9 6.6])
>> print —dpdf % then go to pdf and paste

EXAMPLE Microsoft
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switch to matlab...
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ALTERNATION Microsoft



= [gnore the hard ones
If you search, you'll find plenty of easy examples
But your customers won't...

= Or update more than one coordinate at once

WHAT TO DO? Microsoft



= Alternation is slow

because valleys may not
be axis aligned

= Sotry gradient descent?

25 0 5 10 15

GRADIENT DESCENT Microsoft



= Alternation is slow

because valleys may not
be axis aligned

= Sotry gradient descent?

o 9] = £ 0
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Steepest descent (zg = [0, 14])

GRADIENT DESCENT Microsoft



= Alternation is slow
because valleys may not
be axis aligned

= Sotry gradient descent?

= Note that convergence
proofs are available for
both of the above

= But so what?

95 0 5 10 15
Steepest descent (zg = [0, 14])

GRADIENT DESCENT Microsoft



AND ON A HARD PROBLEM




= (Nonlinear) conjugate
gradients

= Uses 1%t derivatives only

= Avoids “undoing”
previous work
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USE A BETTER ALGORITHM Microsoft
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Conjugate Gradient Descent

USE A BETTER ALGORITHM

—1 0 1
gradient < 1e-3 after 101 iterations

(Nonlinear) conjugate
gradients

Uses 15t derivatives only

And avoids “undoing”
previous work

101 iterations on
this problem

Microsoft
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but we can do better...

Microsoft




= Starting with x how can I choose 6
so that f(x +@ is better than f(x)?

= S0 compute

min f(x + 6) 5(8)= f6ee))

= But hangon, that's the same problem we were
trying to solve?

USE SECOND DERIVATIVES... Microsoft



= Starting with x how can I choose 6
so that f(x + &) is better than f(x)?

= So compute — ElRh
m(sin f(x+6)

~ min f() +6Tg(x) +286TH(x)6

gx) =Vf(x)
H(x) =VV'f(x)

USE SECOND DERIVATIVES... Microsoft



USE SECOND DERIVATIVES... Microsoft



= Choose 6 sothat f(x 4+ &) is better than f(x)?

= Compute — . N> 95
[r\nﬁinf+6Tg+%6TH@

[derive] p by « JZOC @ 3(/ (szﬁ, 3
f
—;-(;: b ‘té’X%(C")*’LL%/()(

USE SECOND DERIVATIVES...



= Choose 6 sothat f(x 4+ &) is better than f(x)?

= Compute
min f + 6§Tg+36"H&

9+HY =0 5= _H1g
H5 - -5 B
J - ‘Hb :—“ H\3 t] sele (H’j)

USE SECOND DERIVATIVES... Microsoft



demo_taylor_2d(o, 'newton’, 'rosenbrock’)
demo_taylor_2d(z, 'newton’, 'rosenbrock’)
demo_taylor_2d(z, 'newton’, ‘sqrt_rosenbrock’)

IS THAT A GOOD IDEA? Microsoft



= Choose 6 sothat f(x 4+ &) is better than f(x)?
= Updates:
ONewton = _H_lg

6GradientDescent — _Ag

USE SECOND DERIVATIVES... Microsoft



= Updates:

_ -1
6Newton = —H g
6GradientDescent — _Ag
= Socombine them:

6DampedNewton = —(H + A_lld)_lg
= -\t a2/ g
= A small =>conservative gradient step
= Alarge =Newton step

USE SECOND DERIVATIVES... Microsoft



Levenberg-Marquardt
= Just damped Newton with approximate H
= Foraspecial form of f

FO) =) fix)?

= where f;(x) are
Zero-mean
small at the optimum

15T DERIVATIVES AGAIN Microsoft



Levenberg Marquardt
= Just damped Newton with approximate H
= Foraspecial form of f

=) G Yol iy

Vf(x) = Z 2 f:5) 7 &(x) 99" &
[] vvTf(x) sz k- VL6 } IINEIES ﬁ
Microsoft



Levenberg Marquardt
= Just damped Newton with approximate H
= Foraspecial formof f

FO) = ) fi)?
7fCO) = ) 2f(OVS,(x)
TYTF() =2 ) FRPECOH VGOV ,(60)

BACK TO FIRST DERIVATIVES Microsoft
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e A ]t (Closed Form)

m—— At (general)

- [_evenberg Marquardt
= Damped Newton (general)
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Function evaluations

CONCLUSION: YMMV Microsoft
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CONCLUSION: YMMV Microsoft
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CONCLUSION: YMMV Microsoft



Truth BuT

= On many problems, = Just alternation is fine
alternation is just fine Unless you're willing to

Indeed always start with a problem-select
couple of alternation steps

. d e i = Alternation has a
= Computing 2" derivatives is

convergence gua rantee

a pain
anyone with compiler/parser = Inverting the Hessian is
experience please contact me. always 0 (n3)

TRUTHAND BuT [Fu € {H, L L,S, T, U° Microsoft




