
The right solution to a nearby problem? 
Or a nearby solution to the right problem? 

OPTIMIZATION 



HOW TO GET IDEAS 

 Chase the high-hanging fruit. 

 Try to make stuff really work. 

 Look for things that confuse/annoy you. 

 

 And occasionally you’ll get a good idea. 

 

 Write about it well. 

2 



COMPUTER VISION AS OPTIMIZATION 

 Computing PCA, LDA, ....  

 Clustering, Gaussian mixture fitting, ....  

 

 Sometimes the optimization is easy... 

  ...sometimes it’s hard 

 

 Sometimes the hard problem is the one you must 
solve 



GOAL 

Given function 
𝑓 𝑥 :ℝ𝑑 ↦ ℝ, 

Devise strategies for finding 𝑥 which minimizes 𝑓 

 



CLASSES OF FUNCTIONS 

Given function 
𝑓 𝑥 :ℝ𝑑 ↦ ℝ 

Devise strategies for finding 𝑥 which minimizes 𝑓 

 

quadratic convex single-
extremum 

multi-
extremum 

noisy horrible 



EXAMPLE 
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>> print -dmeta 



EXAMPLE 

>> print –dpdf % then go to pdf and paste 



EXAMPLE 

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6]) 
>> print –dpdf % then go to pdf and paste 



switch to matlab… 



ALTERNATION 

Easy Hard 



WHAT TO DO? 

 Ignore the hard ones 

 If you search, you’ll find plenty of easy examples 

 But your customers won’t… 

 

 Or update more than one coordinate at once 



GRADIENT DESCENT 

 Alternation is slow 
because valleys may not 
be axis aligned 

 So try gradient descent? 
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GRADIENT DESCENT 

 Alternation is slow 
because valleys may not 
be axis aligned 

 So try gradient descent? 



GRADIENT DESCENT 

 Alternation is slow 
because valleys may not 
be axis aligned 

 So try gradient descent? 

 

 Note that convergence 
proofs are available for 
both of the above 

 But so what? 



AND ON A HARD PROBLEM 



USE A BETTER ALGORITHM 

 (Nonlinear) conjugate 
gradients 

 Uses 1st derivatives only 

 Avoids “undoing” 
previous work 



USE A BETTER ALGORITHM 

 (Nonlinear) conjugate 
gradients 

 Uses 1st derivatives only 

 And avoids “undoing” 
previous work 

 101 iterations on  
this problem 



but we can do better… 



USE SECOND DERIVATIVES… 

 Starting with 𝑥 how can I choose 𝛿  
so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 So compute 
     min
𝛿
  𝑓 𝑥 + 𝛿  

 But hang on, that’s the same problem we were 
trying to solve? 



USE SECOND DERIVATIVES… 

 Starting with 𝑥 how can I choose 𝛿  
so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 So compute 
     min
𝛿
  𝑓 𝑥 + 𝛿  

≈ min
𝛿
 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 12𝛿

⊤𝐻 𝑥 𝛿 

𝑔 𝑥 = 𝛻𝑓 𝑥  
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥) 

 



USE SECOND DERIVATIVES… 

 How does it look? 

 

 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿 

𝑔 𝑥 = 𝛻𝑓 𝑥  
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥) 



USE SECOND DERIVATIVES… 

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 Compute 

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹 

[derive] 



USE SECOND DERIVATIVES… 

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 Compute 

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹 

 
𝜹 = −𝐻−1𝑔 

 

 



IS THAT A GOOD IDEA? 

demo_taylor_2d(0, 'newton', 'rosenbrock') 

demo_taylor_2d(1, 'newton', 'rosenbrock') 

demo_taylor_2d(1, 'newton', ‘sqrt_rosenbrock') 

 

 



USE SECOND DERIVATIVES… 

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 Updates: 
𝜹Newton = −𝐻

−1𝑔 
 

𝜹GradientDescent = −𝜆𝑔 

 

 

 

 



USE SECOND DERIVATIVES… 

 Updates: 
𝜹Newton = −𝐻

−1𝑔 
𝜹GradientDescent = −𝜆𝑔 

 So combine them: 
𝜹DampedNewton = − 𝐻 + 𝜆

−1𝐼𝑑
−1𝑔 

       = −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔 

 𝜆 small ⇒conservative gradient step 

 𝜆 large ⇒Newton step 



1ST DERIVATIVES AGAIN 

Levenberg-Marquardt 

 Just damped Newton with approximate 𝐻 

 For a special form of 𝑓 

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 

 where 𝑓𝑖(𝑥) are  
 zero-mean 

 small at the optimum 



BACK TO FIRST DERIVATIVES 

Levenberg Marquardt 

 Just damped Newton with approximate 𝐻 

 For a special form of 𝑓 

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 

 𝛻𝑓 𝑥 = 
 
 𝛻𝛻⊤𝑓 𝑥 =  



BACK TO FIRST DERIVATIVES 

Levenberg Marquardt 

 Just damped Newton with approximate 𝐻 

 For a special form of 𝑓 

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 

𝛻𝑓 𝑥 = 2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝑖

 

𝛻𝛻⊤𝑓 𝑥 = 2 𝑓𝑖 𝑥 𝛻𝛻
⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻

⊤𝑓𝑖 𝑥

𝑖

 



CONCLUSION: YMMV 
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CONCLUSION: YMMV 

FACE 

1000 runs 

DINOSAUR 

1000 runs 

GIRAFFE 

500 runs 



Truth B𝒖T 

 On many problems, 
alternation is just fine 
 Indeed always start with a 

couple of alternation steps 

 Computing 2nd derivatives is 
a pain 
 anyone with compiler/parser 

experience please contact me. 

 

 Just alternation is fine 
 Unless you’re willing to 

problem-select 

 Alternation has a 
convergence guarantee 

 Inverting the Hessian is 
always 𝑂(𝑛3) 

TRUTH AND B𝑢T [∃𝑢 ∈ H, I, L, S,T,U 6] 

There is a universal optimizer 


