
The right solution to a nearby problem?
Or a nearby solution to the right problem?

OPTIMIZATION

HOW TO GET IDEAS

 Chase the high-hanging fruit.

 Try to make stuff really work.

 Look for things that confuse/annoy you.

 And occasionally you’ll get a good idea.

 Write about it well.

2

COMPUTER VISION AS OPTIMIZATION

 Computing PCA, LDA,

 Clustering, Gaussian mixture fitting,

 Sometimes the optimization is easy...

 ...sometimes it’s hard

 Sometimes the hard problem is the one you must
solve

GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓

CLASSES OF FUNCTIONS

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓

quadratic convex single-
extremum

multi-
extremum

noisy horrible

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

>> print -dmeta

EXAMPLE

>> print –dpdf % then go to pdf and paste

EXAMPLE

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6])
>> print –dpdf % then go to pdf and paste

switch to matlab…

ALTERNATION

Easy Hard

WHAT TO DO?

 Ignore the hard ones

 If you search, you’ll find plenty of easy examples

 But your customers won’t…

 Or update more than one coordinate at once

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

-5 0 5 10 15
-5

0

5

10

15

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

 Note that convergence
proofs are available for
both of the above

 But so what?

AND ON A HARD PROBLEM

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 Avoids “undoing”
previous work

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 And avoids “undoing”
previous work

 101 iterations on
this problem

but we can do better…

USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
 min
𝛿
 𝑓 𝑥 + 𝛿

 But hang on, that’s the same problem we were
trying to solve?

USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
 min
𝛿
 𝑓 𝑥 + 𝛿

≈ min
𝛿
 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 12𝛿

⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 How does it look?

 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹

[derive]

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹

𝜹 = −𝐻−1𝑔

IS THAT A GOOD IDEA?

demo_taylor_2d(0, 'newton', 'rosenbrock')

demo_taylor_2d(1, 'newton', 'rosenbrock')

demo_taylor_2d(1, 'newton', ‘sqrt_rosenbrock')

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Updates:
𝜹Newton = −𝐻

−1𝑔

𝜹GradientDescent = −𝜆𝑔

USE SECOND DERIVATIVES…

 Updates:
𝜹Newton = −𝐻

−1𝑔
𝜹GradientDescent = −𝜆𝑔

 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆

−1𝐼𝑑
−1𝑔

 = −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔

 𝜆 small ⇒conservative gradient step

 𝜆 large ⇒Newton step

1ST DERIVATIVES AGAIN

Levenberg-Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 where 𝑓𝑖(𝑥) are
 zero-mean

 small at the optimum

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 𝛻𝑓 𝑥 =

 𝛻𝛻⊤𝑓 𝑥 =

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

𝛻𝑓 𝑥 = 2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝑖

𝛻𝛻⊤𝑓 𝑥 = 2 𝑓𝑖 𝑥 𝛻𝛻
⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻

⊤𝑓𝑖 𝑥

𝑖

CONCLUSION: YMMV

CONCLUSION: YMMV

GIRAFFE

500 runs

CONCLUSION: YMMV

FACE

1000 runs

DINOSAUR

1000 runs

GIRAFFE

500 runs

Truth B𝒖T

 On many problems,
alternation is just fine
 Indeed always start with a

couple of alternation steps

 Computing 2nd derivatives is
a pain
 anyone with compiler/parser

experience please contact me.

 Just alternation is fine
 Unless you’re willing to

problem-select

 Alternation has a
convergence guarantee

 Inverting the Hessian is
always 𝑂(𝑛3)

TRUTH AND B𝑢T [∃𝑢 ∈ H, I, L, S,T,U 6]

There is a universal optimizer

