
The right solution to a nearby problem? 
Or a nearby solution to the right problem? 

OPTIMIZATION 



HOW TO GET IDEAS 

 Chase the high-hanging fruit. 

 Try to make stuff really work. 

 Look for things that confuse/annoy you. 

 

 And occasionally you’ll get a good idea. 

 

 Write about it well. 

2 



COMPUTER VISION AS OPTIMIZATION 

 Computing PCA, LDA, ....  

 Clustering, Gaussian mixture fitting, ....  

 

 Sometimes the optimization is easy... 

  ...sometimes it’s hard 

 

 Sometimes the hard problem is the one you must 
solve 



GOAL 

Given function 
𝑓 𝑥 :ℝ𝑑 ↦ ℝ, 

Devise strategies for finding 𝑥 which minimizes 𝑓 

 



CLASSES OF FUNCTIONS 

Given function 
𝑓 𝑥 :ℝ𝑑 ↦ ℝ 

Devise strategies for finding 𝑥 which minimizes 𝑓 

 

quadratic convex single-
extremum 

multi-
extremum 

noisy horrible 



EXAMPLE 
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>> print -dmeta 



EXAMPLE 

>> print –dpdf % then go to pdf and paste 



EXAMPLE 

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6]) 
>> print –dpdf % then go to pdf and paste 



switch to matlab… 



ALTERNATION 

Easy Hard 



WHAT TO DO? 

 Ignore the hard ones 

 If you search, you’ll find plenty of easy examples 

 But your customers won’t… 

 

 Or update more than one coordinate at once 



GRADIENT DESCENT 

 Alternation is slow 
because valleys may not 
be axis aligned 

 So try gradient descent? 
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GRADIENT DESCENT 

 Alternation is slow 
because valleys may not 
be axis aligned 

 So try gradient descent? 



GRADIENT DESCENT 

 Alternation is slow 
because valleys may not 
be axis aligned 

 So try gradient descent? 

 

 Note that convergence 
proofs are available for 
both of the above 

 But so what? 



AND ON A HARD PROBLEM 



USE A BETTER ALGORITHM 

 (Nonlinear) conjugate 
gradients 

 Uses 1st derivatives only 

 Avoids “undoing” 
previous work 



USE A BETTER ALGORITHM 

 (Nonlinear) conjugate 
gradients 

 Uses 1st derivatives only 

 And avoids “undoing” 
previous work 

 101 iterations on  
this problem 



but we can do better… 



USE SECOND DERIVATIVES… 

 Starting with 𝑥 how can I choose 𝛿  
so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 So compute 
     min
𝛿
  𝑓 𝑥 + 𝛿  

 But hang on, that’s the same problem we were 
trying to solve? 



USE SECOND DERIVATIVES… 

 Starting with 𝑥 how can I choose 𝛿  
so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 So compute 
     min
𝛿
  𝑓 𝑥 + 𝛿  

≈ min
𝛿
 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 12𝛿

⊤𝐻 𝑥 𝛿 

𝑔 𝑥 = 𝛻𝑓 𝑥  
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥) 

 



USE SECOND DERIVATIVES… 

 How does it look? 

 

 𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿 

𝑔 𝑥 = 𝛻𝑓 𝑥  
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥) 



USE SECOND DERIVATIVES… 

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 Compute 

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹 

[derive] 



USE SECOND DERIVATIVES… 

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 Compute 

min
𝜹
𝑓 + 𝜹⊤𝑔 + 12𝜹

⊤𝐻 𝜹 

 
𝜹 = −𝐻−1𝑔 

 

 



IS THAT A GOOD IDEA? 

demo_taylor_2d(0, 'newton', 'rosenbrock') 

demo_taylor_2d(1, 'newton', 'rosenbrock') 

demo_taylor_2d(1, 'newton', ‘sqrt_rosenbrock') 

 

 



USE SECOND DERIVATIVES… 

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿  is better than 𝑓(𝑥)? 

 Updates: 
𝜹Newton = −𝐻

−1𝑔 
 

𝜹GradientDescent = −𝜆𝑔 

 

 

 

 



USE SECOND DERIVATIVES… 

 Updates: 
𝜹Newton = −𝐻

−1𝑔 
𝜹GradientDescent = −𝜆𝑔 

 So combine them: 
𝜹DampedNewton = − 𝐻 + 𝜆

−1𝐼𝑑
−1𝑔 

       = −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔 

 𝜆 small ⇒conservative gradient step 

 𝜆 large ⇒Newton step 



1ST DERIVATIVES AGAIN 

Levenberg-Marquardt 

 Just damped Newton with approximate 𝐻 

 For a special form of 𝑓 

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 

 where 𝑓𝑖(𝑥) are  
 zero-mean 

 small at the optimum 



BACK TO FIRST DERIVATIVES 

Levenberg Marquardt 

 Just damped Newton with approximate 𝐻 

 For a special form of 𝑓 

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 

 𝛻𝑓 𝑥 = 
 
 𝛻𝛻⊤𝑓 𝑥 =  



BACK TO FIRST DERIVATIVES 

Levenberg Marquardt 

 Just damped Newton with approximate 𝐻 

 For a special form of 𝑓 

𝑓 𝑥 = 𝑓𝑖 𝑥
2

𝑖

 

𝛻𝑓 𝑥 = 2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝑖

 

𝛻𝛻⊤𝑓 𝑥 = 2 𝑓𝑖 𝑥 𝛻𝛻
⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻

⊤𝑓𝑖 𝑥

𝑖

 



CONCLUSION: YMMV 
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CONCLUSION: YMMV 

FACE 

1000 runs 

DINOSAUR 

1000 runs 

GIRAFFE 

500 runs 



Truth B𝒖T 

 On many problems, 
alternation is just fine 
 Indeed always start with a 

couple of alternation steps 

 Computing 2nd derivatives is 
a pain 
 anyone with compiler/parser 

experience please contact me. 

 

 Just alternation is fine 
 Unless you’re willing to 

problem-select 

 Alternation has a 
convergence guarantee 

 Inverting the Hessian is 
always 𝑂(𝑛3) 

TRUTH AND B𝑢T [∃𝑢 ∈ H, I, L, S,T,U 6] 

There is a universal optimizer 


