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A Probabilistic View on Random Fields 

Goal 

Given z and unknown (latent) variables x : 

 
P(x|z) =    P(z|x)     P(x)   / P(z)   ~  P(z|x)  P(x)  
 
 

z = (R,G,B)n x = {0,1}n 

Posterior  
Probability 

Likelihood 
(data- 

dependent) 

Maximium a Posteriori (MAP):  x* = argmax P(x|z) 

Prior 
(data- 

independent) 

x 

x* = argmin E(x) 
x 

We will express this as an 
energy minimization problem: 



                  Likelihood P(x|z) ~ P(z|x) P(x) 
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G
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e
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                  Likelihood P(x|z) ~ P(z|x) P(x) 

Maximum likelihood: 

x* = argmax P(z|x) = 
  
argmax    P(zi|xi) 

P(zi|xi=0) P(zi|xi=1) 

X 

x 
∏ 
xi 



                         Prior P(x|z) ~ P(z|x) P(x) 

P(x) = 1/f  ∏   θij (xi,xj) 
 
f = ∑ ∏  θij (xi,xj)    “partition function” 

 
θij (xi,xj) = exp{-|xi-xj|}    “ising prior” 
 

xi xj 

x 

i,j Є N4 

 i,j Є N 

(exp{-1}=0.36; exp{0}=1) 



Prior 

Solutions with  
highest probability (mode)  

P(x) = 0.012 P(x) = 0.012 P(x) = 0.011 

Pure Prior model: 

Faire Samples 

Smoothness prior needs the likelihood  

P(x) = 1/f  ∏   exp{-|xi-xj|} 
 i,j Є N4 



Posterior distribution  

P(x|z) = 1/f(z,w) exp{-E(x,z,w)} 

E(x,z,w) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 
i i,j Є N 

 

-log P(zi|xi=1) xi -log P(zi|xi=0) (1-xi)  θi (xi,zi) =   

θij (xi,xj) = |xi-xj| 

P(x|z) ~ P(z|x) P(x) 

“Gibbs” distribution:  

Likelihood  

prior 

Energy 

Unary terms Pairwise terms 

Not important that it is a 
proper distribution.  



Energy minimization 

-log P(x|z) = -log (1/f(z,w)) + E(x,z,w) 

MAP same as minimum Energy 

MAP; Global min E 

x* = argmin E(x,z,w) 

ML 

f(z,w) = ∑ exp{-E(x,z,w)} 
X 

X 

P(x|z) = 1/f(z,w) exp{-E(x,z,w)} 

E(x,z,w) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 
i i,j Є N 

 



Weight prior and likelihood 

w =0 

E(x,z,w) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 

w =10 

w =200 w =40 



Learning the weighting w  
Training set:  

Error rate 

w 

Image Trimap Ground truth labelling 

Loss function: number of misclassified pixels   



Exercise 

You will have a chance to re-implement an interactive 
image segmentation and play with different settings 
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Model : 
 discrete or continuous variables? 
 discrete or continuous space? 
 Dependence between variables? 
 … 

Random Field Models for Computer Vision  

Inference/Optimisation 
 Combinatorial optimization:  

e.g. Graph Cut 

 Message Passing: e.g. BP, TRW 

 Iterated Conditional Modes (ICM) 

 LP-relaxation: e.g. Cutting-plane 

 Problem decomposition + subgradient  

 … 

 

Learning: 
 Maximum Likelihood Learning 

 Pseudo-likelihood approximation 

 Loss minimizing Parameter Learning 

 Exhaustive search  

 Constraint generation  

 … 

 

Applications: 
 2D/3D Image segmentation 
 Object Recognition 
 3D reconstruction 
 Stereo matching 
 Image denoising 
 Texture Synthesis 
 Pose estimation 
 Panoramic Stitching 
 … 



Detour on Learning 

In the following I only discuss some concepts and insights  
…. done formally in Christoph Lampert’s  lectures… 

Why is it important to think about P(x|z,w) ? 
 … we could just talk about minimizing objective 
 function E(x,z,w) 

Following slides are motivated from: 
[Nowozin and Lampert, Structure Learning and Prediction in Computer Vision, 2011]   



How to make a decision 

Risk R is the expected loss: 

“loss function” 

Goal: Choose x* which minimizes the risk R 

Assume model P(x|z,w) is known 

R = ∑ P(x|z,w) Δ(x,x*) 
x 



Which solution x* do you choose? 

Space of all solutions x 
(sorted by pixel difference) 

P(x|z,w) 

task 



Image-wide 0/1 loss 

Space of all solutions x 
(sorted by pixel difference) 

P(x|z,w) 

Δ(x,x*) = 0 if x*=x, 1 otherwise 

R = ∑ P(x|z,w) Δ(x,x*) 
x 

MAP x* = argmax P(x|z,w) 
x 

task 



Pixel-wise Hamming loss 

Space of all solutions x 
(sorted by pixel difference) 

P(x|z,w) 

Δ(x,x*) = ∑ xi ≠ xi* 

R = ∑ P(x|z,w) Δ(x,x*) 
x 

task 
Maximizing Marginals: xi* = argmax P(xi|z,w) 

xi i 

Needs “probabilistic inference“, e.g. sum-product BP, sampling,  
which is different to MAP  

Reminder: 
Marginal: P(xi=k) = ∑ P(x1,…,xi=k,…,xn) 

Example man-made object detection *Nowozin and Lampert ‘2011+ 

argmax P(xi) argmax P(x) 
x xi 

P(xi=0) 

Xj\i 



Pixel-wise Square loss 

Space of all solutions x 
(sorted by pixel difference) 

P(x|z,w) 

Δ(x,x*) = ∑ |xi-xi*|
2 

R = ∑ P(x|z,w) Δ(x,x*) 
x task 

Minimum Mean squared error (MMSE) : xi*= ∑ xi P(xi|z,w)  
i 

multi-label 

xi 



Probabilistic Parameter Learning 

{xn,zn}        argmax Π P(xn|zn,w) + |w|2 

Loss 
MAP 

Maximum Marginals 

MMSE Regularized Maximum 
Likelihood estimation 

Construct decision function,  
e.g. x* = argmax P(x|z,w) 

Test time: 
optimize decision function for new z, i.e. x* = argmax P(x|z,w) 

Training 
database 

w n 

x 

Training: 

x 



Example – Image denoising 

Z1..m 

Ground truths Train images 

Regularized Maximum Likelihood learning: 
pairwise 4-connected MRF   
(needs a lot of work …) 

MAP  
(image 0-1 loss) 

MMSE  
(pixel-wise squared loss) 

Test image - true 

Input test image - noisy … so is MAP not interesting then? 

x1..m 

[see details in: Putting MAP back on the map, 
Pletscher et al. DAGM 2010] 



Alternative pipeline for learning 

“Traditional” probabilistic Parameter Learning (2 steps)  

Loss-Minimizing Parameter Learning (1 step) 

 
  

Test-time is MAP: x*=argmax P(x|z,w) 
 

Best w such that  x*=argmax P(x|z,w) 
 

is optimal wrt Risk:   

{xn,zn}        argmax Π P(xn|zn,w) + |w|2 

Loss MAP 

Maximum Marginals 

MMSE Regularized Maximum 
Likelihood estimation 

Construct decision function,  
e.g. x* = argmax P(x|z,w) 

Training 
database 

w n 

x 

x 

Training 
database 

{xn,zn}  

R = ∑ P(x|z,w) Δ(x,x*) 
x 

x 



Example – Image denoising 

Loss-Minimizing Parameter Learning: 
pairwise 4-connected MRF   
(needs a lot of work …) 

MAP  
(image 0-1 loss) 

MMSE  
(pixel-wise squared loss) 
“does not make sense” 

Test image - true 

Input test image - noisy 

Z1..m 

Ground truths Train images 

x1..m 



Comparison of the two pipelines: models 

Loss-minimizing 

Probabilistic 

Unary potential: |zi-xi| Pairwise potential: |xi-xj| 

Unary potential: |zi-xi| Pairwise potential: |xi-xj| 



Insight: P(x|z,w) can often not get close to the 
true distribution of the training data.  
In that case  “Loss-minimizing / MAP” is better. 

Comparison of the two pipelines 

[see details in: Putting MAP back on the map, 
Pletscher et al. DAGM 2010] 

Loss-minimizing / MAP 

Probabilistic / MMSE 

True image 

Deviation from true model  

P
re

d
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ti
o

n
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o

r 



 
When is MAP estimation important? 

• Many vision systems are hand-crafted since they 
have a few “intuitive” parameters 
 

• The learning is done via “Loss minimization 
Parameter learning” (e.g. cross validation). 

    … note that the global optimality of MAP is very important  
         (a lot of this lecture is about that)  

 

• The model is not part of bigger systems  
(so uncertainty not needed)  
… note MAP based uncertainty can also be done, known as:  
    min-marginals P(xi=k) = argmax P(x1,…,xi=k,…,xn) 

Xj\i 



Model : 
 discrete or continuous variables? 
 discrete or continuous space? 
 Dependence between variables? 
 … 

Random Field Models for Computer Vision  

Inference/Optimisation 
 Combinatorial optimization: e.g. Graph 

Cut 

 Message Passing: e.g. BP, TRW 

 Iterated Conditional Modes (ICM) 

 LP-relaxation: e.g. Cutting-plane 

 Problem decomposition + subgradient  

 … 

 

Learning: 
 Maximum Likelihood Learning 

 Pseudo-likelihood approximation 

 Loss minimizing Parameter Learning 

 Exhaustive search  

 Constraint generation  

 … 

 

Applications: 
 2D/3D Image segmentation 
 Object Recognition 
 3D reconstruction 
 Stereo matching 
 Image denoising 
 Texture Synthesis 
 Pose estimation 
 Panoramic Stitching 
 … 



Introducing Factor Graphs 

Write probability distributions as Graphical model: 
 
 - Direct graphical model  
 - Undirected graphical model “traditionally used for MRFs” 

 - Factor graphs “best way to visualize the underlying energy” 

  
References:  
 - Pattern Recognition and Machine Learning *Bishop ‘08, book, chapter 8+ 

 - several lectures at the Machine Learning Summer School 2009  
   (see video lectures)  
 



Factor Graphs 

x2 x1 

x4 x3 

x5 

Factor graph  

unobserved 

  

P(x) ~ exp{-E(x)}  
E(x) = θ(x1,x2,x3) + θ(x2,x4) + θ(x3,x4) + θ(x3,x5)   

variables are in same factor.  

“4 factors” 

Gibbs distribution 



Definition “Order” 

Definition “Order”: 
The arity (number of variables) of 
the largest factor 

      E(X) = θ(x1,x2,x3) θ(x2,x4) θ(x3,x4) θ(x3,x5) 

x2 x1 

x4 x3 

x5 

Factor graph  
with order 3 

arity 3 arity 2 

Extras: 
• I will use “factor” and “clique” in the same way 
• Not fully correct since clique may or may not be 

decomposable   
• Definition of “order” same for clique and factor 

(not always consistent in literature) 

• Markov Random Field:  Random Field with  
low-order factors/cliques.  

x2 x1 

x4 x3 

x5 

Undirected 
model 

Triple 
clique 



Examples - Order 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Example: Image segmentation 
P(x|z) ~ exp{-E(x)} 

E(x) = ∑ θi (xi,zi) + ∑ θij (xi,xj) 
i 

Observed variable 

Unobserved (latent) variable 

xi 

 i,j Є N4 

zi 

Factor graph 

xj 



Segmentation: Conditional Random Field 
E(x) = ∑ θi (xi,zi) + ∑ θij (xi,xj,zi,zj) 

i 

Observed 
variable 

Unobserved 
(latent) variable 

 i,j Є N4 

Conditional Random Field (CRF): no pure prior 

MRF 

xj 

zj 

zi 

xj 

zj 

zi 

xi 

xj 

Factor graph 
CRF 

θij (xi,xj,zi,zj) = |xi-xj| (-exp{-ß||zi-zj||}) 
 

ß=2(Mean(||zi-zj||2) )-1 

||zi-zj|| 

θij  



d=4 

d=0 

Stereo matching 

Ground truth depth Image – left(a) Image – right(b) 

• Images rectified 
• Ignore occlusion for now  

E(d): {0,…,D-1}n → R 

Energy: 

Labels: d (depth/shift) 

di 



Stereo matching - Energy 

θij (di,dj) = g(|di-dj|) 

E(d): {0,…,D-1}n → R 

Energy: 

E(d) = ∑ θi (di) + ∑ θij (di,dj) 

Pairwise: 

i  i,j Є N4 

θi (di) = (lj-ri-di) 
“SAD; Sum of absolute differences” 
(many others possible, NCC,…)  

i 

i-2 
(di=2) 

Unary: 

Left Image 
R

ig
h
t 

Im
ag

e 

left 

right 



Stereo matching - prior 

[Olga Veksler PhD thesis, 
Daniel Cremers et al.]  

|di-dj| 

θij (di,dj) = g(|di-dj|) 

co
st

 

No truncation 
(global min.) 



Stereo matching - prior 

[Olga Veksler PhD thesis, 
Daniel Cremers et al.]  

|di-dj| 

discontinuity preserving potentials 
*Blake&Zisserman’83,’87+ 

θij (di,dj) = g(|di-dj|) 

co
st

 

No truncation 
(global min.) 

with truncation 
(NP hard optimization) 



Stereo matching  
see http://vision.middlebury.edu/stereo/ 
 

No MRF 
Pixel independent (WTA) 

No horizontal links  
Efficient since independent chains 

Ground truth Pairwise MRF 
*Boykov et al. ‘01+ 

http://vision.middlebury.edu/stereo/


Texture synthesis 

Input 

Output 

*Kwatra et. al. Siggraph ‘03 + 

E: {0,1}n → R  

b 

a 

O 

1 
 i,j Є N4 

E(x) = ∑ |xi-xj| [ |ai-bi|+|aj-bj| ] 

a 

b 

a 

b 

i j i j 

Good case: Bad case: 



Video Synthesis 

Output Input 

Video  

Video (duplicated) 



Panoramic stitching 



Panoramic stitching 



Recap: 4-connected MRFs 

• A lot of useful vision systems are based on  
   4-connected pairwise MRFs. 
 
• Possible Reason (see Inference part):  
   a lot of fast and good (globally optimal)  
   inference methods exist 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Why larger connectivity? 

We have seen… 

• “Knock-on” effect (each pixel influences each other pixel)  

• Many good systems 
 

What is missing: 

1. Modelling real-world texture (images) 

2. Reduce discretization artefacts 

3. Encode complex prior knowledge 

4. Use non-local parameters 

 



Reason 1: Texture modelling  

Test image Test image (60% Noise) Training images 

Result MRF 
9-connected 

(7 attractive; 2 repulsive) 

Result MRF 
4-connected 

Result MRF 
4-connected 
(neighbours) 



Reason2: Discretization artefacts 

[Boykov et al. ‘03, ‘05+ 

Larger connectivity can model true Euclidean 
length  (also other metric possible) 

Eucl. 

Length of the paths: 

4-con. 

5.65 

8 

1 

8-con. 

6.28 

6.28 

5.08 

6.75 



Reason2: Discretization artefacts 

4-connected 
Euclidean 

8-connected 
Euclidean (MRF) 

8-connected 
geodesic (CRF) 

*Boykov et al. ‘03; ‘05+ 



3D reconstruction  

[Slide credits: Daniel Cremers] 



Reason 3: Encode complex prior knowledge:  
Stereo with occlusion 

Each pixel is connected to D pixels in the other image 
 

E(d): {1,…,D}2n → R 

match 
θlr (dl,dr) =   

dl dr 

d=10 (match) 

1 

D 

d 

1 

D 

d 
d=20 (0 cost) 

d=1 (     cost)  ∞ 

Left view right view 



Stereo with occlusion 

Ground truth Stereo with occlusion 
*Kolmogrov et al. ‘02+ 

Stereo without occlusion 
*Boykov et al. ‘01+ 



Reason 4: Use Non-local parameters: 
Interactive Segmentation (GrabCut) 

*Boykov and Jolly ’01+ 

GrabCut *Rother et al. ’04+ 



A meeting with the Queen 



Reason 4: Use Non-local parameters: 
Interactive Segmentation (GrabCut) 

An object is a compact set of colors: 

[Rother et al. Siggraph ’04+ 

E(x,w) = ∑ θi (xi,w) + ∑ θij (xi,xj) 
i  i,j Є N4 

E(x,w): {0,1}n x {GMMs}→ R 

R
ed

 

R
ed

 

w 

Model jointly segmentation and color model:  



Reason 4: Use Non-local parameters: 
Object recognition & segmentation 

E(x,ω) = ∑ θi (ω, xi) +∑ θi (xi) + ∑ θi ( xi) + ∑ θij (xi,xj) 
i,j i (color) (location) 

Building 

Sky 
 

Tree 
Grass 

(class) 

xi ∊ {1,…,K} for K object classes 

(edge aware 
ising prior) 

Class (boosted textons) Location 

sky grass 

[TextonBoost; Shotton et al. ‘06+ 



Class+ 
location 

+ edges + color 

Reason 4: Use Non-local parameters: 
Object recognition & segmentation 

[TextonBoost; Shotton et al, ‘06+ 



Reason 4: Use Non-local parameters: 
Recognition with Latent/Hidden CRFs 

• Many other examples:  
• ObjCut [Kumar et. al. ’05+  
• Deformable Part Model [Felzenszwalb et al.; CVPR ’08+ 
• PoseCut [Bray et al. ’06+ 
• Branch&Mincut [Lempitsky et al. ECCV ‘08+ 

 
• Maximizing over hidden variables  

vs. marginalize over hidden variables 
  

 

“parts” 

“instance 
label” 

“instance” 

[LayoutCRF Winn et al. ’06+ 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Why Higher-order Functions? 

In general θ(x1,x2,x3) ≠ θ(x1,x2) + θ(x1,x3) + θ(x2,x3)  

Reasons for higher-order MRFs: 
 

1. Even better image(texture) models: 
– Field-of Expert [FoE, Roth et al. ‘05+ 

– Curvature *Woodford et al. ‘08+ 

 

2. Use global Priors: 
– Connectivity *Vicente et al. ‘08, Nowizin et al. ‘09+ 

– Better encoding label statistics *Woodford et al. ‘09+ 

– Convert global variables to global factors [Vicente et al. ‘09+  

 

 



Reason1: Better Texture Modelling 

Test Image Test Image (60% Noise) 

Training images 

Result  pairwise MRF 
9-connected 

Higher Order Structure 
not Preserved 

Higher-order MRF 

[Rother et al. CVPR ‘09+ 



Reason 2: Use global Prior 
Foreground object must be connected: 

User input Standard MRF: 
Removes noise (+) 
Shrinks boundary (-) 

with connectivity 

E(x) = P(x) + h(x)       with h(x)= { ∞  if not 4-connected 
0   otherwise 

[Vicente et al. ’08 
Nowozin et al. ‘09+ 



Reason 2: Use global Prior 

*Woodford et. al. ICCV ‘09] 

Introduce a global term,  
which controls statistic 

Noisy input 

P(x) = 0.012 P(x) = 0.011 

Remember 
bias of Prior: 

Pa
ir

-w
is

e
 

|xi-xj| 

Ground truth Results: increased pairwise strength  



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 

…. all useful models,  
     but how do I optimize them? 



Advanced CRF system 

[Unwrap Mosaic, Rav-Acha  et al. Siggraph ’08+ 



Detour: continuous variables and    
continuous domain 



Gaussian MRFs: continuous-valued MRFs 

|xi-xj| 

θij (xi,xj) = g(|xi-xj|) 

Pa
ir

-w
is

e 

E(x) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 

θi (xi,zi) = |xi-zi|  

Convex unary and pairwise terms: 

original input TRW-S 
(discrete labels) 

HBF [Szelsiki  ‘06+ 
(continuous labels) 
~ 15times faster 

xi ∊ R 

xi 

u
n

ar
y 

Can be solved globally optimal, e.g. gradient decent 



Field-of-Expert  
*Roth et al. ‘05+ 

A non-convex model …  

Optimization: gradient decent, BP, fusion move 

Sum over 
patches 

Non-convex 
function 

Linear filters 

Linear filters 

Smoothing MRF  
[Bertalmio et al., Siggraph ‘00] 

FoE Image 
(zoom) 

Inpainting results 



from [Schelten and Roth CVPR’11+ 

Image u (zoom) Piece-wise linear  
functions f (zoom) 

MRF factor graph 
(cliques for smoothness term) 

E(f;u) =  𝒇 − 𝒖 𝟐Ω  +  |𝛁𝒇|Ω  

Convex data-
term 

Total variation 
smoothness 

Energy: 

Continuous Domain 



Continuous Domain 

More to come in Andrew Fitzgibbon’s lecture … 

from [Schelten and Roth CVPR’11+ 

Advantages: 
 
• Energy is independent of the 

pixel grid 
 

• Fast GPU solvers have been 
developed 

  

Disadvantages: 
 
• World is continuous … but then you have to 

model the image formation process (e.g. 
camera PSF, etc). 
 

• So far no learning (since no probabilistic 
interpretation) 
 

• Variational models are  rather simple (1st 
and 2nd - order derivatives).  Advanced 
discrete models, e.g. FoE, are so far 
superior. 

  



Outline 

• Introduction to Random Fields 

• MRFs/ CRFs models in Vision  

• Optimisation techniques  

• Comparison 



Why is good optimization important? 

[Data courtesy from Oliver Woodford] 

Problem:  Minimize a binary 4-connected pair-wise MRF  
       (choose a colour-mode at each pixel) 

Input: Image sequence 

Output: New view 

*Fitzgibbon et al. ‘03+  



Why is good optimization important? 

Belief  Propagation ICM, Simulated 
Annealing 

Ground Truth 

QPBOP [Boros et al. ’06, Rother et al. ‘07+ 

Global Minimum 

Graph Cut with truncation 
*Rother et al. ‘05+ 



Recap 

E(x) =  ∑ fi (xi) + ∑ gij (xi,xj) + ∑ hc(xc)  
i ij c 

Unary Pairwise Higher Order 

Label-space: 
 
Binary: xi ϵ {0,1} 
Multi-label: xi ϵ {0,…,K} 
 



Inference – Big Picture  
 

• Combinatorial Optimization (main part) 
– Binary, pairwise MRF: Graph cut, BHS (QPBO) 
– Multiple label, pairwise: move-making; transformation 
– Binary, higher-order factors: transformation 
– Multi-label, higher-order factors:  

move-making + transformation 
 

• Dual/Problem Decomposition  
– Decompose (NP-)hard problem into tractable once. 

Solve with e.g. sub-gradient technique 
 

• Local search / Genetic algorithms  
– ICM, simulated annealing 

 



Inference – Big Picture 

• Message Passing Techniques  
– Methods can be applied to any model in theory 

(higher order, multi-label, etc.) 
– BP, TRW, TRW-S 
 

• LP-relaxation  
– Relax original problem (e.g. {0,1} to [0,1])  

and solve with existing techniques (e.g. sub-gradient)   
– Can be applied any model (dep. on solver used) 
– Connections to message passing (TRW) and 

combinatorial optimization (QPBO) 



Inference – Big Picture:  
Higher-order models 

• Arbitrary potentials are only tractable for order <7 
(memory, computation time) 
 

• For ≥7 potentials need some structure to be 
exploited in order to make them tractable 
(e.g. cost over number of labels) 

 



Function Minimization: The Problems 

• Which functions are exactly solvable? 
 

 

 

 

• Approximate solutions of NP-hard problems 
 

 

 

 

 
  



Function Minimization: The Problems 

• Which functions are exactly solvable? 
 Boros Hammer [1965], Kolmogorov Zabih [ECCV 2002, PAMI 2004] , Ishikawa [PAMI 2003], 

Schlesinger [EMMCVPR 2007], Kohli Kumar Torr  [CVPR2007, PAMI 2008] , Ramalingam Kohli 
Alahari  Torr [CVPR 2008] , Kohli Ladicky Torr [CVPR 2008, IJCV 2009] , Zivny Jeavons [CP 2008] 

 

• Approximate solutions of NP-hard problems 
 Schlesinger [1976 ], Kleinberg and Tardos [FOCS 99], Chekuri et al. [2001], Boykov et al. [PAMI 

2001], Wainwright et al. [NIPS 2001], Werner [PAMI 2007], Komodakis [PAMI 2005], Lempitsky et 
al. [ICCV 2007], Kumar et al. [NIPS 2007], Kumar et al. [ICML 2008], Sontag and Jakkola [NIPS 
2007],  Kohli et al. [ICML 2008], Kohli et al. [CVPR 2008, IJCV 2009], Rother et al. [2009] 

 



Message Passing Chain:  
Dynamic Programming 

q p r 

f (xp) + gpq (xp,xq) 

Mp->q(L1) = min f (xp) + gpq (xp, L1)  
xp 

= min (5+0, 1+2, 2+2) 

5 

1 

2 

Mp->q(L1,L2,L3)  = (3,1,2) 

L1 

with Potts model gpq =2 ( xp ≠xq ) 



Message Passing Chain:  
Dynamic Programming 

q p r 

f (xp) + gpq (xp,xq) 

5 

1 

2 

L1 

with Potts model gpq =2 ( xp ≠xq ) 



Message Passing Chain:  
Dynamic Programming 

q p r 

Mq->r (Li) = min Mp->q + f (xq) + gqr (xq,Li) 

Global minimum in linear time  

Get optimal labeling for xr :   

Trace back path to get minimum 
cost labeling x 

min Mq->r + f (xr) 

This gives min E 

xr 

xq 



• Dynamic programming: global minimum in linear time 
 

• BP: 
– Inward pass (dynamic programming) 

– Outward pass 

q p r 

BP on a tree  
[Pearl’88+ 

root leaf 

leaf s 



q p r 

Inward pass (dynamic programming) 

Mp->q  

s 



q p r 

Inward pass (dynamic programming) 

Mq->r  

s 



q p r 

Inward pass (dynamic programming) 

s 

Ms->r  



q p r 

Inward pass (dynamic programming) 

s 

Mr->t  



q p r 

Outward pass 

s 



• Pass messages using same rules 

– Sequential schedule 

– Parallel schedule 

– Initialize messages 

 

• May not converge 
 

• Speed-up tricks [Felzenschwalb et al ‘04+ 

– Naïve implementation O(K2)  

– O(K) for Potts model, truncated linear/quadratic 

 

BP in a general graph 



Tree-reweighted Message passing (TRW) 
[Wainwright, Kolmogorov]  

• Iterate 2 Operations:  
– BP on trees (can be seen as changing energy; re-parametrization)  
– node averaging (another re-parametrization) 
(see ICCV ’07, ‘09 tutorials) 

 
• Provides a lower bound 

 

 Lower Bound < E(x*) < E(x’) 
 
 

• Tries to solve a LP relaxation of the MAP problem 

+ 



Message Passing Techniques 

• Exact on Trees, e.g. chain  
 

 
 
• Loopy graphs: many techniques: BP, TRW, TRW-S,  

Dual-Decomposition, Diffusion: 
– Message update rules differ 
– Compute (approximate) MAP or marginals P(xi | xV\{i} ) 

– Connections to LP-relaxation (TRW tries to solve MAP LP) 

 
 
 

• Higher-order MRFs: Factor graph BP 
 
 

[Felzenschwalb et al  ‘01+ 

node to 
factor 

factor to 
node 

*See details in tutorial ICCV ’09, CVPR ‘10+ 



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 
– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 
– move-making 

• Binary, higher-order 
– Transformation to pairwise 
– Problem decomposition 

• Global variables 
 

 



Example: n = 2, A = [1,0] , B = [0,1] 

f([1,0]) + f([0,1])   f([1,1]) + f([0,0]) 

Property : Sum of submodular functions is submodular 

E(x) = ∑ ci xi + ∑ dij |xi-xj| 
i i,j 

Binary Image Segmentation Energy is submodular 

Binary functions that can be solved exactly 

for all A,B ϵ {0,1}n  f(A) + f(B)    f(A˅B) + f(A˄B) 
(AND) (OR) 

Pseudo-boolean function f{0,1}n  ℝ  is submodular if 



Submodular binary, pairwise MRFs:  
Maxflow-MinCut or GraphCut algorithm *Hammer et al. ‘65+ 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

Graph (V, E, C) 
 

Vertices V = {v1, v2 ... vn} 
 

Edges E = {(v1, v2) ....} 
 

Costs C = {c(1, 2) ....} 



The st-Mincut Problem 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

What is a st-cut? 



The st-Mincut Problem 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

What is a st-cut? 

An st-cut (S,T) divides the nodes 
between source and sink. 

What is the cost of a st-cut? 

Sum of cost of all edges going 
from S to T 

5 + 1 + 9 = 15 



The st-Mincut Problem 
What is a st-cut? 

An st-cut (S,T) divides the nodes 
between source and sink. 

What is the cost of a st-cut? 

Sum of cost of all edges going 
from S to T 

What is the st-mincut? 

st-cut with the 
minimum cost 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

2 + 2 + 4 = 8 



So how does this work?  
Construct a graph such that: 

1. Any st-cut corresponds to an assignment of x  

2. The cost of the cut is equal to the energy of x : E(x) 

3. Find min E, min st-cut 

Solution 
T 

S st-mincut 

E(x) 

[Hammer, 1965] [Kolmogorov and  Zabih, 2002] 



E(x) =  ∑ θi (xi) + ∑ θij (xi,xj) 
i,j i 

st-mincut and Energy Minimization 

θij(0,1) + θij
 (1,0)   θij

 (0,0) + θij
 (1,1) For all ij 

E(x) = ∑ cixi + c’i(1-xi) + ∑ cij xi(1-xj) 
i,j i 

Equivalent (transform to 
“normal form”) 

cij≥0 ci, c’i ϵ {0,p}  
with p≥0 

[Kolmogorov and  Rother ‘07+ 



Example 
Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

E(v1,v2) = 2v1 + 5(1-v1)+ 9v2 + 4(1-v2)+ 2v1(1-v2)+ (1-v1)v2 



Example 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

E(v1,v2) = 2v1 + 5(1-v1)+ 9v2 + 4(1-v2)+ 2v1(1-v2)+ (1-v1)v2 

v1 = 1  v2 = 0 

E (1,0) = 8 

optimal st-mincut: 8 



How to compute the st-mincut? 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 Solve the maximum flow problem 

Compute the maximum flow between 
Source and Sink s.t. 

Edges: Flow < Capacity 

 Nodes: Flow in = Flow out 

Assuming non-negative capacity 

In every network, the maximum flow 
equals the cost of the st-mincut 

Min-cut\Max-flow Theorem 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Flow = 0 



Augmenting Path Based Algorithms 

1. Find path from source to sink 
with positive capacity 

 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Flow = 0 



Augmenting Path Based Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 

Source 

Sink 

v1 v2 

2-2 

5-2 

9 

4 
2 

1 

Flow = 0 + 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

9 

4 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 

Flow = 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

9 

4 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

9 

4 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

5 

0 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 + 4 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

5 

0 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 6 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

5 

0 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 6 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

1 

3 

0 
2-2 

1+2 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 6 + 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

2 

4 

0 

3 

0 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 8 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

2 

4 

0 
3 

0 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 8 

Saturated edges give the minimum cut. Also flow is min E.   



History of Maxflow Algorithms 

[Slide credit: Andrew Goldberg] 

Augmenting Path and Push-Relabel n: #nodes 
 

m: #edges 
 

U: maximum edge 
weight 

Computer Vision problems: efficient dual search tree augmenting path algorithm 
*Boykov and Kolmogorov PAMI ‘04+ O(mn2|C|) … but fast in practice: 1.5MPixel per sec.  



Minimizing Non-Submodular Functions 

• Minimizing general non-submodular functions is  
NP-hard.  
 

• Commonly used method is to solve a relaxation of the 
problem 

E(x) =  ∑ θi (xi) + ∑ θij (xi,xj) 
i,j i 

θij(0,1) + θij
 (1,0)  < θij

 (0,0) + θij
 (1,1) for some ij 



pairwise nonsubmodular 

unary 

pairwise submodular 

Minimization using Roof-dual Relaxation 

)0,1()1,0()1,1()0,0( pqpqpqpq  

)0,1(
~

)1,0(
~

)1,1(
~

)0,0(
~

pqpqpqpq  

[Boros, Hammer, Sun ’91; Kolmogorov, Rother ‘07] 



Minimization using Roof-dual Relaxation 
(QPBO, BHS-algorithm) 

Double number of variables: ppp xxx ,

• E’ is submodular (you will prove that in an exercise) 

• Ignore constraint and solve anyway 

[Boros, Hammer, Sun ’91; Kolmogorov, Rother ‘07] 



Example of the Graph 

p1 

p1 

p2 

p2 

p3 

p3 

source 

sink 



Minimization using Roof-dual Relaxation 
(QPBO, BHS-algorithm) 

• Output: original xp ϵ {0,1,?} (partial optimality)  

 

 

• Solves the LP relaxation for binary pairwise MRFs 

• Extensions possible QPBO-P/I *Rother et al. ‘07+ 



Example result 

Diagram recognition:  
2700 test cases (QPBO nearly solves all) 



What is the LP relaxation approach? 
[Schlesinger’76+ 

• Write MAP as Integer Program (IP) 
• Relax to Linear Program (LP relaxation) 
• Solve LP (polynomial time algorithms) 
• Round LP to get best IP solution (no guarantees) 

 
(valid for binary and multi-label problems) 



MAP Inference as an IP 

Indicator vectors: 

Integer Program 
Example:  

Xp,0=0, Xp,1=1 

Xp = 1 



MAP Inference as an IP 

Integer Program 

Indicator vectors: 

Example:  

Xq,1=1 
Xp,q,1,1=0 

Xq,0=0 Xp,0=1 

Xp,1=0 

Xp,q,0,1=1 Xp,q,1,0=0 

Xp,q,0,0=0 

Xp,0=0, Xp,1=1 

Xp = 1 



Relax to LP 

Linear Program 

Indicator vectors: 

Example:  

Xp,0=0, Xp,1=1 

Xp = 1 

• Solve it: Simplex, Interior Point methods, Message Passing, QPBO, etc.  
• Round continuous solution 

Xq,1=1 
Xp,q,1,1=0 

Xq,0=0 Xp,0=1 

Xp,1=0 

Xp,q,0,1=1 Xp,q,1,0=0 

Xp,q,0,0=0 



Relax to LP 

Indicator vectors: 

Example:  

Xp,0=0, Xp,1=1 

Xp = 1 

• Solve it: Simplex, Interior Point methods, Message Passing, QPBO, etc.  
• Round continuous solution 

rounding 



A binary example 

  0  -1 

 -1  0 

No unary terms 

All pairwise: 
p q 

r 

p q 

r 

p q 

r 

0.5 
Xp,q,0,0 

Xp,0 
1 

value = -2 

1 

1 

1 

1 

1 

value = 0.5*6 = -3 

Recent effort: Tightening LP relaxation, e.g. *Sontag et al. ‘08+  

0.5 

0.5 

0.5 0.5 

0.5 
0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

MAP solution 

Optimal relaxation 

0 1 

1 

p q 
p 
q 



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 
– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 
– move-making 

• Binary, higher-order 
– Transformation to pairwise 
– Problem decomposition 

• Global variables 
 

 



Transform exactly: multi-label to binary 

Labels: l1  …. lk   

variables: x1  …. xn 

 
New nodes: n * k  

x1 = l3  x2 = l2 

x3 = l2  x4 = l1 

Example: transformation approach 

[Ishikawa PAMI ‘03] 



Example transformation approach 

E(x) =  ∑ θi (xi) + ∑ g (|xi-xj|) 
 i,j i 

g(|xi-xj|) 

|xi-xj| 

Problem: not discontinuity 
preserving  Exact if g convex: 

No truncation 
(global min.) 

with truncation 
(NP hard 

optimization) 



Unary Potentials Pair-wise  
Potentials 

Ishikawa 
Transformation [03] 

Arbitrary  Convex and 
Symmetric 

Schlesinger 
Transformation 

[06] 

Arbitrary  Submodular 

Hochbaum  
[01] 

Linear Convex and 
Symmetric 

Hochbaum  
[01] 

Convex Convex and 
Symmetric 

Exact Solutions for Multi-label Problems 

Other “less known” algorithms 

θij(li+1,lj) + θij
 (li,lj+1)  θij

 (li,lj) + θij
 (li+1,lj+1) 

li +1 

li 

lj +1 

lj 



Move Making Algorithms 

Solution Space 

En
er

gy
 



Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

En
er

gy
 



Iterative Conditional Mode (ICM) 

x2 

x1 x4 

x5 

x3 

E(x) = θ12 (x1,x2)+ θ13 (x1,x3)+ 
          θ14 (x1,x4)+ θ15 (x1,x5)+… 

ICM: Very local moves get stuck in local 
minima 
 
 
 
 

Simulated Annealing: accept move even if 
energy increases (with certain probability) 

ICM Global min. 



Graph Cut-based Move Making Algorithms
  

Space of Solutions (x) : Ln  

Move Space (t) : 2n  
Search Neighbourhood 

Current Solution 

n Number of Variables 

L Number of  Labels 

[Boykov , Veksler and Zabih 2001] 

A series of globally optimal large moves  



Expansion Move 

Sky 

House 

Tree 

Ground 

Initialize with Tree Status: Expand Ground Expand House Expand Sky 

[Boykov, Veksler, Zabih] 

• Variables take label a  or retain current label 

[Boykov , Veksler and Zabih 2001] 



Example 



Expansion Move 

• Move energy is submodular if: 

– Unary Potentials: Arbitrary 

– Pairwise potentials: Metric 

[Boykov, Veksler, Zabih] 

θij (la,lb) = 0 iff la=lb  

Examples: Potts model, Truncated linear 
(not truncated quadratic)  

[Boykov , Veksler and Zabih 2001] 

Other moves: alpha-beta swap, range move, etc. 

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc) 

θij (la,lb) = θij (lb,la) ≥ 0 



Fusion Move:  
Solving Continuous-valued Problems 

x =  t x1 + (1-t) x2 

x1, x2 can be continuous 

t 
x1 

x2 

x 

Optical Flow  
Example 

Final 
Solution 

Solution 
from 

Method 1 

Solution 
from 

Method 2 

[Lempitsky, Rother, Blake, 2007] 



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 
– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 
– move-making 

• Binary, higher-order 
– Transformation to pairwise  

(arbitrary < 7, and special potentials) 
– Problem decomposition 

• Global variables 
 

 



Example: Transformation with factor size 3 

f(x1,x2,x3) = θ111x1x2x3 + θ110x1x2(1-x3) + θ101x1(1-x2)x3 + … 

f(x1,x2,x3) =  ax1x2x3 + bx1x2 + cx2x3… + 1 

Quadratic polynomial can be done 

Idea: transform 2+ order terms into 2nd order terms 
Many Methods for exact transformation 
Worst case: exponential number of auxiliary nodes 
(e.g. factor size 5 gives 15 new variables *Ishikawa PAMI ‘09+) 
Problem: often non-submodular pairwise MRF  

  



Example transformation  
[Freedman and Drineas ’05, Kolmogorov and Zabhi ’04, Ishikawa ’09+ 

g(x1,x2,x3) 

-x1x2x3 = min –z(x1+x2+x3-2) 

Useful : 

z 
z ϵ {0,1} 

Check: 
• all x1,x2,x3 = 1 then z=1 
• Otherwise z=0  

g(x1,x2,x3) = min –az (x1+x2+x3-2) 
Transform: 
Case a<0: 

z 

g(x1,x2,x3) = min a{z(x1+x2+x3-1)+(x1x2+x2x3+x3x1)-(x1+x2+x3+1)} Case a>0: 
(similar trick) 

z 

f(x1,x2,x3) =  ax1x2x3 + bx1x2 + cx2x3… + 1 

submodular 

non-submodular 



Special Potential: Label-Cost Potential 
[Hoiem et al. ’07, Delong et al. ’10, Bleyer et al. ‘10+ 

E(x)  =   P(x) +  

From *Delong et al.  ’10+ 

Image Grabcut-style result With cost for each new label 
*Delong et al. ’10+ 
(Same function as [Zhu and Yuille ‘96+)  

“pairwise 
MRF” 

∑ cl [   p: xp= l ] 
l Є L 

E 

“Label cost” 

Label cost = 4c  
Label cost = 10c  

E: {1,…,L}n → R 

Basic idea: penalize the complexity of the model 
• Minimum description length (MDL)  
• Bayesian information criterion (BIC)  

Transform to pairwise MRF with one extra node  (use alpha-expansion) 

[Many more special higher-order potentials in tutorial CVPR ’10+ 



Pn Potts - Image Segmentation 

E(X) = ∑ ci xi + ∑ dij |xi-xj| 
i i,j 

E: {0,1}n → R 
 

0 →fg, 1→bg 

n = number of pixels 

[Boykov and Jolly ‘ 01]  [Blake et al. ‘04] [Rother et al.`04] 

Image Unary Cost Segmentation 



Pn Potts Potentials  

Patch Dictionary 
(Tree) 

Cmax  0 

{ 0      if xi = 0, i ϵ p  
Cmax  otherwise 

h(Xp) = 

p 

[slide credits: Kohli] 



Pn Potts Potentials  

E(X) = ∑ ci xi + ∑ dij |xi-xj| + ∑ hp (Xp) 
  i i,j p 

p 

{ 0      if xi = 0, i ϵ p  
Cmax  otherwise 

h(Xp) = 

E: {0,1}n → R 
 

0 →fg, 1→bg 

n = number of pixels 

[slide credits: Kohli] 



Image Segmentation 

E(X) = ∑ ci xi + ∑ dij |xi-xj| + ∑ hp (Xp) 
  i i,j 

Image Pairwise Segmentation Final Segmentation 

p 

E: {0,1}n → R 
 

0 →fg, 1→bg 

n = number of pixels 

[slide credits: Kohli] 



Application:  
Recognition and Segmentation 

from [Kohli et al. ‘08] 

Image 

Unaries only 
TextonBoost 

*Shotton et al. ‘06+ 

 
Pairwise CRF only 
*Shotton et al. ‘06+ 

 
Pn Potts 

One super-
pixelization 

another super-
pixelization 

 
robust Pn Potts 

 
robust Pn Potts 

(different f) 



Generalizing Pn Potts model 

See more details in: [Kohli et. al. CVPR ‘07, ‘08, PAMI ’08, IJCV ‘09+ 

F(∑ xi) 

∑ xi  

concave 

0 

Transform to  
submodular  
pair-wise MRF 



Problem/Dual Decomposition 

• Well known in optimization community [Bertsekas ’95, ‘99+ 

 

• Other names: “Master-Slave” [Komodiakis et al. ‘07, ’09+ 

 

• Examples of Dual-Decomposition  approaches: 
– Solve LP of TRW [Komodiakis et al. ICCV ‘07+ 

– Image segmentation with connectivity prior [Vicente et al CVPR ‘08+ 

– Feature Matching [Toressani et al ECCV ‘08+ 

– Optimizing Higher-Order Clique MRFs [Komodiakis et al CVPR ‘09+ 

– Marginal Probability Field *Woodford et al ICCV ‘09+ 

– Jointly optimizing appearance and Segmentation [Vicente et al ICCV 09] 

 



Dual Decomposition 

min E(x) = min [ E1(x) + θTx  + E2(x) – θTx ]  
  

           

• θ is called the dual vector (same size as x)  
 

• Goal: max L(θ) ≤ min E(x) 
 

• Properties: 
• L(θ) is concave (optimal bound can be found) 
• If x1=x2 then problem solved (not guaranteed) 

x x 

x θ 

Hard to optimize Possible to optimize Possible to optimize 

x1 x2 “Lower bound” 

≥ min [E1(x1) + θTx1] + min [E2(x2) - θTx2] = L(θ) 



Dual Decomposition 
L(θ)  = min [E1(x1) + θTx1] + min [E2(x2) - θ

Tx2]  x1 x2 

Subproblem 1 
 x1 = min [E1(x1) + θTx1] 
   

x1 x2 

Subgradient Optimization [shor ‘85+: 

subgradient 

Θ  

Θ  Θ  

Θ = Θ + λ(x1-x2)  

x1 

Subproblem 2 
 x2 = min [E2(x2) + θTx2] 
   

x2 

“Slaves” 

“Master” 

Example optimization 

• Guaranteed to converge to optimal bound L(θ)  

• Choose step-width λ correctly ([Bertsekas ’95+) 

• Pick solution x as the best of x1 or x2 

• E and L can in- and decrease during optimization  

* 

* * 

* 

* * 



Example: Segmentation and Connectivity 

Foreground object must be connected: 

User input Standard MRF Standard MRF 
+h 

Zoom in 

E(x) = ∑ θi (xi) + ∑ θij (xi,xj) + h(x) 
 

h(x)= { ∞ if x not 4-connected 
0 otherwise 

*Vicente et al ’08+ 



E(x) = ∑ θi (xi) + ∑ θij (xi,xj) + h(x) 
 

{ ∞ if x not 4-connected 
0 otherwise 

Example: Segmentation and Connectivity 

E1(x)  

min E(x) = min [ E1(x) + θTx  + E2(x) – θTx ]  
  

          ≥ min [E1(x1) + θTx1] + min [E2(x2) - θ
Tx2] = L(θ) 

x1 x2 

x x 

Derive Lower bound: 

Subproblem 1: 

Unary terms + 
pairwise terms 

Global minimum: 
GraphCut 

Subproblem 2: 

Unary terms + Connectivity 
constraint 

Global minimum: Dijkstra 

h(x)= 

E2(x)  



Results: Segmentation and Connectivity 

Global optimum 12 out of 40 cases.  
(more complex decomposition used) 

Image Input GraphCut GlobalMin 

Extra 
Input 

*Vicente et al ’08+ 



Problem decomposition approach: 
alternative to message passing  

 

 

• Slightly different updates than TRW.  
 

• solve LP relaxation of the MAP problem (TRW not exactly) 
 

+ 

min E(x) =             min [ E1(x) + θTx  +   E2(x) – θTx ]  
  

           
 x 

x 



results 

*Komodiakis et al ’07+ 



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 
– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 
– move-making 

• Binary, higher-order 
– Transformation to pairwise  

(arbitrary < 7, and special potentials) 
– Problem decomposition 

• Global variables 
 

 



MRF with global potential 
GrabCut model [Rother et. al. ‘04+ 

Fi = -log Pr(zi|θF) Bi= -log Pr(zi|θB) 

Background 

Foreground G 

R 

θF/B Gaussian  
Mixture models 

E(x,θF,θB) = 

Problem: for unknown x,θF,θB the optimization is NP-hard! [Vicente et al. ‘09]  

Image z Output x 

∑ Fi(θF)xi+ Bi(θB)(1-xi)  + ∑ |xi-xj| 
i,j Є N  i 

θF/B 



 MRF with global potential: 
GrabCut - Iterated Graph Cuts 

Learning of the  
 colour distributions  

Graph cut to infer  
segmentation 

F 

x 
min E(x, θF, θB)  
θF,θB 

min E(x, θF, θB)  

B 

Most systems with global variables work like that   
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. ’06+ 

θF/B 

More sophisticated methods: *Lempitsky et al ‘08, Vicente et al ‘09] 



1 2 3 4 

   MRF with global potential: 
GrabCut - Iterated Graph Cuts 

Energy after each Iteration Result 

You will implement that in the practical session. 



Transformation to other higher-order MRF 

E(x, w) 

w Color model 

Highly connected MRF 

E’(x) = min E(x, w) 
w 

Higher-order MRF 

E(x,w) = ∑ θi (xi,w) + ∑ θij (xi,xj) 

E(x,w): {0,1}n x {GMMs}→ R 

*Vicente et al; ICCV ’09] 



Transformation to other higher-order MRF 

Prefers “equal area” segmentation Each color either fore- or background 

0 n/2 n 

g convex fb 

0 max 

concave 

E(x)= g(∑xi) + ∑ fb(∑xib) + ∑ 
i b  i,jЄN 

θij (xi,xj)  

input 

∑xi ∑xib 

E1 E2 

“Solve with dual-
decomposition” 



Transformation to other higher-order MRF 

*Vicente et al; ICCV ’09] 

Globally optimal in 60% of cases, such as… 



Outline 

• Introduction to Random Fields 

• MRFs/ CRFs models in Vision  

• Optimisation techniques  

• Comparison 



Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al. ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
  

 
• Multi-label, highly-connected MRFs *Kolmogorov et al. ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al. ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
  

 
• Multi-label, highly-connected MRFs *Kolmogorov et al. ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Random MRFs 

Three important factors:  

o Unary strength: 

o Connectivity (av. degree of a node) 

o Percentage of non-submodular terms (NS) 

E(x) = w ∑ θi (xi) + ∑ θij (xi,xj)  



Computer Vision Problems 

perc. unlabeled (sec) Energy                  (sec) 

Conclusions:  
• Connectivity is a crucial factor 
• Simple methods like Simulated 

Annealing sometimes best  



Diagram Recognition [Szummer et al ‘04] 

71 nodes; 4.8 con.; 28% non-sub; 0.5 unary strength 

Ground truth 

GrapCut  E= 119 (0 sec) ICM E=999 (0 sec) BP  E=25 (0 sec) 

QPBO: 56.3% unlabeled (0 sec) 
QPBOP (0sec) - Global Min. 
Sim. Ann. E=0 (0.28sec) 

•   2700 test cases: QPBO solved nearly all 

   (QPBOP solves all) 



Binary Image Deconvolution 
 50x20 nodes; 80con; 100% non-sub; 109 unary strength  

Ground Truth Input 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

MRF: 80 connectivity  - illustration  

5x5 blur kernel 



Binary Image Deconvolution 
 50x20 nodes; 80con; 100% non-sub; 109 unary strength  

Ground Truth QPBO 80% unlab.  (0.1sec) Input 

ICM E=6 (0.03sec) QPBOP 80% unlab. (0.9sec) GC E=999 (0sec) 

BP E=71 (0.9sec) QPBOP+BP+I, E=8.1 (31sec) Sim. Ann. E=0 (1.3sec) 



Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

Conclusion: low-connectivity tractable: QPBO(P) 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
 

 
• Multi-label, highly-connected MRFs *Kolmogorov et al ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Multiple labels – 4 connected 

*Szelsiki et al ’06,08+ 

stereo 

Panoramic 
stitching 

Image 
Segmentation; 
de-noising;  
in-painting 

“Attractive  Potentials” 



Stereo 

Conclusions:  
– Solved by alpha-exp. and TRW-S  

(within 0.01%-0.9% of lower bound – true for all tests!) 

– Expansion-move always better than swap-move 

 

image Ground 
truth 

TRW-S image Ground 
truth 

TRW-S 



De-noising and in-painting 

Conclusion: 

– Alpha-expansion has problems with smooth areas 
(potential solution: fusion-move *Lempitsky et al. ‘07+)  

 

 

Ground truth TRW-S Alpha-exp. Noisy input 



Panoramic stitching 

• Unordered labels are (slightly) more challenging 



Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

Conclusion: low-connectivity tractable (QPBO) 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
Conclusion: solved by expansion-move; TRW-S 
             (within 0.01 - 0.9% of lower bound) 

 
• Multi-label, highly-connected MRFs *Kolmogorov et al ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Multiple labels – highly connected 

  Stereo with occlusion: 

Each pixel is connected to D pixels in the other image 
 

E(d): {1,…,D}2n → R 

*Kolmogorov et al. ‘06+ 



Multiple labels – highly connected 

• Alpha-exp. considerably better than message passing 

Tsukuba: 16 labels  Cones: 56 labels  

Potential reason: smaller connectivity in one expansion-move  



Comparison: 4-con. versus highly con. 

Conclusion: 
• highly connected graphs are harder to optimize 

 

Tsukuba (E) Map (E) Venus (E) 

highly-con. 103.09% 103.28% 102.26% 

4-con. 100.004% 100.056% 100.014% 

Lower-bound scaled to 100% 



Comparison papers 
• binary, highly-connected MRFs *Rother et al. ‘07+  

Conclusion: low-connectivity tractable (QPBO) 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
 Conclusion: solved by alpha-exp.; TRW 
    (within 0.9% to lower bound) 

 
• Multi-label, highly-connected MRFs *Kolmogorov et al ‘06+ 

 Conclusion: challenging optimization (alpha-exp. best) 
    
 
 How to efficiently optimize general highly-connected  

(higher-order) MRFs is still an open question  

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Decision Tree Fields 
*Nowozin et al. ICCV ‘11 (oral)+ 

• Combine Decision Trees with Random Fields: 

– represent all potentials (unary, pairwise, triple 
clique, etc.) with decision trees 
 

• Key motivations: 

– Discover the power of the “conditional aspects” of 
random field models 

– Derive a tractable model which can deal with large 
amount of data  



Decision Trees 

• Multi-class classifier 

• Simple binary feature test 
at internal nodes 

• Empirical distribution 
at leafs 

• Learning:  
– Sample feature tests 

– Split using Entropy 

• Inference: 
“Run down” the tree –  
read posterior from leaf 



Decision Trees 

- conditional independence assumption   
  between decisions (pixels) 

Pros: 

- non-parametric, high model capacity 
- very efficient test-time 
- very fast training (GPU) 

Cons: 

… how bad is that? 



Decision Tree Field (DTF) 

Every factor type has one: 
• Scope: relative set of variables it acts on 
• Decision tree: tree with split functions 
• Weight parameters: in each tree node 

Example: 5 factor types 

Random Field Graphical Model 

Z 

xi 



DTF - Energy 

𝐸 𝒙, 𝒛,𝒘 = 𝐸𝑡𝐹 𝑥𝐹, 𝒛,𝑤𝑡𝐹
𝐹

 

𝐸𝑡𝐹 𝑥𝐹, 𝒛, 𝑤𝑡𝐹 =  𝑤𝑡𝐹 𝑞, 𝑥𝐹
𝑞∈𝑃𝑎𝑡ℎ 𝑧

𝐹

 

z 

𝑦 = (1,2) 

w 1,∗  

Example: pairwise factor 

𝐸𝑡𝐹 𝑥𝐹, 𝒛, 𝑤𝐹  = w(1,(1,2)) + w(2,(1,2)) + w(5,(1,2))    

w 2,∗  w 3,∗  

w 4,∗  w 5,∗  

𝐸𝑡𝐹 𝑥𝐹, 𝒛, 𝑤𝑡𝐹 = 𝑤𝑡𝐹, 𝐵𝑡𝐹 𝑥𝐹, 𝑧𝐹  

𝐵𝑡𝐹 𝑥𝐹, 𝑧𝐹 = 

sparse, binary vector 

Energy linear in w: 



DTF – Special Cases 

• Only unary factors = Decision Forest 

• Zero-depth trees = MRF 

• Conditional pair-wise = typical CRF 

 



DTF - Inference 

• MAP:  
– Standard techniques (here: TRW-S) 

after unrolling the graph 
– Simulated annealing (no unrolling) 

 

• Maximum Marginals:  

– efficient Gibbs sampler (no 
unrolling needed) 



DTF - Learning 

What to learn? 
 

• Structure: what factor types to use 
(currently: highly connected pairwise factors) 

 
• Decision trees: what feature tests to use for splits 

(currently: standard entropy splitting)   

 
• Weights 

(maximum (pseudo)-likelihood learning, since log-objective is 
concave) 



Toy Problem 

Snakes: demonstrate weak unaries 
  

Labeling 

Samples from unaries Unaries MRF DTF 

RF Unary MRF DTF 

Avg. acc. 90.3% 90.9% 91.9% 99.4% 

Tail acc. 100% 100% 100% 100% 

Mid acc. 28% 28% 38% 95% 

Input 

Test 

Labeling 



Results – Chinese Characters 



Results – Chinese Characters 



Results – Kinect Body part labelling 
Goal: Encode “conditional” spatial layout of labelling 

So far: 
30 images only 

… we can train up to 1.5M weights in 22minutes 



Visualizing conditional aspect 

Silhouettes 
overlaid 

Weights at 
one leave 

Examples 



That’s it… 
References 
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Another advertisement… 

• Internships at MSR Cambridge 

• Typically 3 months 

• Recommended for PhD students towards the 
end of their studies 


