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A Probabilistic View on Random Fields

Given Z and unknown (latent) variables X

P(x|z) = P(z|x) P(x) /P ~ P(z|x) P(x)

Maximium a Posteriori (MAP): x* = argmax P(x|z)
%

We will express this as an
energy minimization problem: x* = argmin E(x)
X



P(x)

P(x|z) ~

ihood

Likel

Gaussian Mixture Model - blue(x) foreground; red(*) background
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Likelihood P(x|z) ~ P(x)
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P(z;|x;=0)

Maximum likelihood:
x* = argmax P(z|x) =
X

argmax || P(z;|x;)
x X%




Prior P(x|z) ~ P(z|x)

P(x) = 1/f TI 6,J (x;.%;)

i,j € Ng

f=2 T[ 9,J (xi.x;)  “partition function”

0, (x.,x;) = exp{-lxi-le} “ising prior”

(exp{-1}=0.36; exp{0}=1)



Prior

Pure Prior model: P(x) = 1/f T exp{-|x, X|}

i,J € Ny

Faire Samples Solutions with
highest probability (mode)

P(x) =0.012 P(x) = 0.012

Smoothness prior needs the likelihood



Posterior distribution
P(x|z) ~ P(z|x) P(x)

“Gibbs” distribution:
P(x|z) = 1/f(z,w) exp{-E(x,z,w)}
E(x.z,w) = Zei (x.2) + w), 0, (xi.x;)

i,j €N

6, (x;.z;)) = -log P(z;|x;=1) x; -log P(z;|x,=0) (1-x.)

6;; (x.x)) = Ix;i-xl \

Not important that it is a
proper distribution.




Energy minimization

P(x|z) = 1/f(z,w) exp{-E(x,z,w)}
f(z,w) = Z exp{-E(x,z,w)}

-log P(x|z) = -log (l/f(z,w)) + E(x,z,w)
x* = argmin E(x,z,w) MAP same as minimum Energy
E(x,z,w) = ZG (x.,z) + w)_ 6y (x;.X;)

i, €N

MAP; Global min E



Weight prior and likelihood

w =40 w =200

E(x,z,w) = Zei (x;.z;) + WZ eij (xi:xj)



Learning the weighting w

Training set:

Trimap Ground truth labelling
Error rate
& T T
o
4
El |
0 201 doa

Loss function: number of misclassified pixels



Exercise

You will have a chance to re-implement an interactive
image segmentation and play with different settings
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Random Field Models for Computer Vision

Model :

discrete|or continuous variables?
discrete|or continuous space?

Dependence between variables?

Applications:
2D/3D Image segmentation
Object Recognition
3D reconstruction
Stereo matching
Image denoising
Texture Synthesis
Pose estimation
Panoramic Stitching

Inference/Optimisation

m  Combinatorial optimization:
e.g. Graph Cut

m  Message Passing: e.g. BP, TRW

m Iterated Conditional Modes (ICM)

m LP-relaxation: e.g. Cutting-plane

m  Problem decomposition + subgradient

Learning:
m  Maximum Likelihood Learning
m Pseudo-likelihood approximation
m Loss minimizing Parameter Learning
m Exhaustive search
m Constraint generation



Detour on Learning

Why is it important to think about P(x|z,w) ?
... we could just talk about minimizing objective
function E(x,z,w)

In the following | only discuss some concepts and insights
.... done formally in Christoph Lampert’s lectures...

Following slides are motivated from:
[Nowozin and Lampert, Structure Learning and Prediction in Computer Vision, 2011]



How to make a decision

Assume model P(x|z,w) is known

Goal: Choose x* which minimizes the risk R

Risk R is the expected loss:

R = ) P(x|z,w) A(x,x*)

“loss function”



Which solution x* do you choose?

£ e

P(x|z,w)

Space of all solutions X
(sorted by pixel difference)



Image-wide 0/1 loss

£ 3

P(x|z,w)

Space of all solutions X
(sorted by pixel difference)

R = ) P(x|z,w) A(x,x*)

task
A(x,x*) = 0 if x*=x, 1 otherwis MAP x* = P(x|z,
(x,x*) otherwise I:I} x* = argmax (x]z,w)



Pixel-wise Hamming loss

Reminder:
Marginal: P(x;=k) = ¥ P(x4,...,x;=K, ..., X,)
Xji
Needs “probabilistic inference”, e.g. sum-product BP, sampling,
which is different to MAP

Example man-made object detection [Nowozin and Lampert ‘2011]

W

argr)r(\ax P(x:) argr)r(\ax P(x)

e

P(x;=0)

nce)

Z,W)



Pixel-wise Square loss

£ 33

P(x|z,w)

Space of all solutions X
(sorted by pixel difference)

¢  multi-label R = ZP(XIZ,W) A(X,X*)
X

task /

A(x,x*) = 'Z | %;-x.*|2 |:>Minimum Mean squared error (MMSE) : x.*= é x;. P(x;|z,w)



Probabilistic Parameter Learning

Loss

/ "
{x..z,} => argmax TT P(x,|z,.w) + |w|2 E——> Maximum Marginals
w n

Training Regularized Maximum \ MMSE

database Likelihood estimation

Training:

Construct decision function,
e.g. X* = argr)r(\ax P(x|z,w)

Test time:
optimize decision function for new z, i.e. X* = argmax P(x|z,w)
X




Example — Image denoising

Regularized Maximum Likelihood learning:
pairwise 4-connected MRF
(needs a lot of work ...)

>

zl..m X1.m
Train images Ground truths

MAP
(pixel-wise squared loss) (image 0-1 loss)

Input test image - noisy ... S0 is MAP not interesting then?

[see details in: Putting MAP back on the map,
Pletscher et al. DAGM 2010]



Alternative pipeline for learning

“Traditional” probabilistic Parameter Learning (2 steps)

Loss MAP

{x,.z,} => argmax TT P(x,|z,.,w) + |w|? Z&———> Maximum Marginals
w n

Training Regularized Maximum \ MMSE

database Likelihood estimation
Construct decision function,

e.g. X* = argr)r(mx P(x|z,w)

Loss-Minimizing Parameter Learning (1 step)

Test-time is MAP: x*=ar'gr§\<ax P(x|z,w)

K -
{x.,z} —> |Bestw suchthat x =argmax P(x|z,w)

Training

database is optimal wrt Risk: R = ;P(xh'w) A(x, x*)




Example — Image denoising

Loss-Minimizing Parameter Learning:
> pairwise 4-connected MRF
(needs a lot of work ...)

zl..m X1.m
Train images Ground truths

MMSE

(image 0-1 loss) (pixel-wise squared loss)

i “does not make sense”

Input test image - noisy



Comparison of the two pipelines: models
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Comparison of the two pipelines

—— MM/MAP
—= MPLE/MMSE

=
oo
I

o
(@)
I

o
.
T

Prediction error

o
(]
I

| 0ss-minimizing / MAP

| |
0 0.5 1 15 2
Deviation from true model

Insight: P(x|z,w) can often not get close to the
true distribution of the training data.
In that case “Loss-minimizing / MAP” is better.

Probablllstl / MMSE

[see details in: Putting MAP back on the map,
Pletscher et al. DAGM 2010]



When is MAP estimation important?

 Many vision systems are hand-crafted since they
have a few “intuitive” parameters

* The learning is done via “Loss minimization
Parameter learning” (e.g. cross validation).

... hote that the global optimality of MAP is very important
(a lot of this lecture is about that)

* The model is not part of bigger systems
(so uncertainty not needed)

... note MAP based uncertainty can also be done, known as:
min-marginals P(x,=k) = argmax P(x,, ...,x;=k, ...,x,)
j\i



Random Field Models for Computer Vision

Model :

discrete|or continuous variables?
discrete|or continuous space?

Dependence between variables?

Applications:
2D/3D Image segmentation
Object Recognition
3D reconstruction
Stereo matching
Image denoising
Texture Synthesis
Pose estimation
Panoramic Stitching

Inference/Optimisation

m  Combinatorial optimization: e.g. Graph
Cut

m  Message Passing: e.g. BP, TRW

m Iterated Conditional Modes (ICM)

m LP-relaxation: e.g. Cutting-plane

m  Problem decomposition + subgradient

Learning:
m  Maximum Likelihood Learning
m Pseudo-likelihood approximation
m Loss minimizing Parameter Learning
m Exhaustive search
m Constraint generation



Introducing Factor Graphs

Write probability distributions as Graphical model:

- Direct graphical model
- Undirected graphical model “traditionally used for MRFs”
- Factor graphs “best way to visualize the underlying energy”

References:

- Pattern Recognition and Machine Learning [Bishop ‘08, book, chapter 8]

- several lectures at the Machine Learning Summer School 2009
(see video lectures)



Factor Graphs

P(x) ~ exp{-E(x)}
E(x) = 6(x1,%2,%3) + B(x7,X4) + O(x3,X4) + 6(X3,X5)

unobserved O

X : .
@ 2 variables are in same factor. ——

Factor graph



Definition “Order”
(x1)

The arity (number of variables) of
the largest factor

Factor graph

E(X) :\e(x1,YX2,X3)ﬂe(X2,X4) 9(X3Y,X4) e(x3,><5)} with order 3
arity 3 arity 2 T:r.iple
clique
(>—G
| will use “factor” and “clique” in the same way
Not fully correct since clique may or may not be /
decomposable 63 Q
Definition of “order” same for clique and factor K
(not always consistent in literature) _
Markov Random Field: Random Field with Undirected
low-order factors/cliques. @ model




Examples - Order

4-connected; higher(8)-connected; Higher-order RF
pairwise MRF pairwise MRF
E(x) = Y 6;;(x.x;) E(x) = Y, 8, (x.X;) E(x) =iJZ€NeLi (X:.X;)
i,j € N, i'j € Ng ' 4

+O(x4,....X,)
Order 2 Order 2 Order n

o H H ” .
Pairwise energy “higher-order energy”



Random field models

4-connected;
pairwise MRF

E(x) = D 6 (x.x))

i,j €N,
Order 2

“Pairwise energy”

higher(8)-connected;
pairwise MRF

E(x) = Z 6;; (x;.x;)

i,j € N8

Order 2

Higher-order RF

E(x) = Z 6;; (xi.X;)
i, €Ny
+O(x4,....X,)
Order n

“higher-order energy”



Example: Image segmentation

P(x|z) ~ exp{-E(x)}
E(x) = 29 (x;2) + 2 B (x;.x))

i,j € Ny

‘ Observed variable

O Unobserved (latent) variable

Factor graph



Segmentation: Conditional Random Field
E(x) = Ze (%) + 2. 8 (xi%;,2:.2))

i.J €Ny
i (X.,xJ,Z.,zJ) |xi-x;| (-exp{-B|1zi-z;|1})

B=2(Mean(||z-z|1,) )*

Conditional Random Field (CRF): no pure prior

Observed
variable

O Unobserved
(latent) variable

F h
actor grap VIRF CRF



Stereo matching

| Image — left(a) Image — right(b) Ground truth depth

* Images rectified
* Ignore occlusion for now

Energy:

E(d): {O,..D-1}» - R
Labels: d (depth/shift)




Stereo matching - Energy

E(d): {O,...D-1}n - R
E(d) = 2 0 (d) + ZNeiJ' (di.d;)

i,j €Ny

6, (d) = (I;-ri.q)
“SAD; Sum of absolute differences”
(many others possible, NCC,...)

©;;(di.d)) = g(ldi_djl)



Stereo matching - prior

No truncation
(global min.)

6, (dh ) = g(1di-d;

’

cost =—>»
\
\
N
\

[Olga Veksler PhD thesis,
Daniel Cremers et al.]



Stereo matching - prior

©;;(di.d)) = g(ldi'djl)

’
’

’
’
’

COSt  =—p

|di'dj| —

discontinuity preserving potentials
[Blake&Zisserman’83,87]

No truncation with truncation
(global min.) (NP hard optimization)

[Olga Veksler PhD thesis,
Daniel Cremers et al.]



O 0O
O 0O

O 0O

Stereo matching

see http://vision.middlebury.edu/stereo/

No MRF
Pixel independent (WTA)

Pairwise MRF
[Boykov et al. ‘01]

No horizontal links
Efficient since independent chains

Ground truth


http://vision.middlebury.edu/stereo/

Texture synthesis

LLE LESLLLD L LLLL TL 1L LULALLLL 10SELL, dL LLLIS UG LW JLLUE
rtndabrears woune Tring roorms,” a5 Heft he fastnd it
3¢5 dat nosears cortseas yibed. it last ok hest bedian 1. 1
econical Homd ith A1, Heft avs &¥ a5 da Lewrindailf]

5 of Monica Lessinosw seee ian A1 Ths," as Lewing questies last aticarsticall. He
icat nuoseea e left a roouse is dian. &1 last fal counda Leswr at "this dailyears d ily
fastngine lauesticars Hef edianicall. Hoorewing roorns,” as House De fale £ De
ind itfonestidita ving gie: und itical couneestscribed it last fall. He fall. Hefft
aung fall. He ribof Mouse 15 oroheoned it nd it he lef1 a ringing questica Lewnin.
athedian A1 Lest fasee yea Jcars coecoms,” astore years of Monica Lewinow seee
dan Alét he f2wr se Ting que 2 Thas Fring roormne stooniscat noswea te left a roouse
storears ofas 1 Fratmica L bowestof Bde lelfta Lést fastngine lawesticars Hef
fas quest nging of, atbeou wd it rip?’ TeIouself, a ring ind itfonestid it a ring qie:
.astical cois ore wears of Moung fall. He ribof Mouse

I n p ut vee ywears ofanda Tripp?™ That hedian &1 Lest fasee yea

ada Teipp? Tolitical cornedian 16t he fawr se Ting que
olitical conwe re years of the storears ofa5 1 Fratoica L
vas Lewwr se lesta vime 1 He fas questnging of, atbeou

Output

Good case: Bad case:

bo @ b e e

e
h

coniesl Efoma W HAT, Heftors o 35 851 E
dan £1Ths," as Lefoing quasties Jast aticary

{0.1}» —R
5 -:1.1'an. Adlast fal ¢ s Lew',"at _"Tl'n's daily
i?;g::::a]i} cribed itl :}:'1113”;1221; E(X) - Z |x|-XJI [ |a|-bi| + |aj-bj| ]

t5 oroheo ing qu.estl . .

icats coRCOms, a5 omica Le J € N4
1 Thas Fring roome wea e lef:
bowestof fdde 1elft all.és ine lauues
d it rip? | Telouself, Fri = anestid. ity

[Kwatra et. al. Siggraph ‘03 ]



Video Synthesis

Input Output

/Video (duplicated)




Panoramic stitching
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Panoramic stitching




Recap: 4-connected MRFs

* A lot of useful vision systems are based on
4-connected pairwise MRFs.

e Possible Reason (see Inference part):
a lot of fast and good (globally optimal)
inference methods exist



Random field models

4-connected; higher(8)-connected; Higher-order RF
pairwise MRF pairwise MRF
E(x) = Y 6;;(x.x;) E(x) = Y, 8, (x.X;) E(x) =iJZ€NeLi (X:.X;)
i,j € N, i'j € Ng ' 4

+O(x4,....X,)
Order 2 Order 2 Order n

o H H ” .
Pairwise energy “higher-order energy”




Why larger connectivity?

We have seen...

e “Knock-on” effect (each pixel influences each other pixel)
* Many good systems

What is missing:

1. Modelling real-world texture (images)
2. Reduce discretization artefacts

3. Encode complex prior knowledge

4. Use non-local parameters




Reason 1: Texture modelling

L ]

Result MRF Result MRF Result MRF
4-connected 4-connected 9-connected
(neighbours) (7 attractive; 2 repulsive)



Reason?2: Discretization artefacts

Length of the paths:

[ Eucl. 4-con. 8-con.
5.65 6.28 5.08
— 8 6.28 6.75

Larger connectivity can model true Euclidean

length (also other metric possible)

[Boykov et al. ‘03, ‘05]



Reason?2: Discretization artefacts

4-connected 8-connected 8-connected
Euclidean Euclidean (MRF) geodesic (CRF)

[Boykov et al. ‘03; ‘05]



3D reconstruction

Graph cut Graph cut

True solution _ .
(6-connected grid) (26-connected grid)

[Slide credits: Daniel Cremers]



Reason 3: Encode complex prior knowledge:
Stereo with occlusion

E(d):{1,..D}*" >R

Each pixel is connected to D pixels in the other image

d=1 (oo cost)
1 1 .\

d=10 (match)

\ d=20 (O cost)

o R NG

d d Left view right view




Stereo with occlusion

a4

=1 I wl P el

Ground truth Stereo with occlusion Stereo without occlusion
[Kolmogrov et al. ‘02] [Boykov et al. ‘01]



Reason 4: Use Non-local parameters:
Interactive Segmentation (GrabCut)

A

GrabCut [Rother et al. '04]
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Reason 4: Use Non-local parameters:
Interactive Segmentation (GrabCut)

Model jointly segmentation and color model:

E(x,w): {0,1}r x {6GMMs}— R
E(xw)= Z 6, (x;w) + ¥ G.J (Xi.%;)

i, €Ny

An object is a compact set of colors:

Red
Red

[Rother et al. Siggraph '04]



Reason 4: Use Non-local parameters:
Object recognition & segmentation

E(x,w) = Ze (w, %) +2.6; (x) +2.6,(x) + 2 6 (x,x;)

(color) (location) (class) ' (edge aware

ising prior)
x;€ {1,.. K} for Kobject classes

Location Class (boosted textons)

rectangle r texton t

Sky gr‘ass (a) Input image (b) Texton map (c) Feature pair = (r,t)  (d) Superimposed rectangles

[TextonBoost; Shotton et al. ‘06]



Reason 4: Use Non-local parameters:
Object recognition & segmentation

(b) 69.6% (c) 70.3% (d) 72.2%
Class+ + edges + color
location

[TextonBoost; Shotton et al, ‘06]



Reason 4: Use Non-local parameters:
Recognition with Latent/Hidden CRFs

“instance”

0 i} o .-

“instance
Iabe/” - ‘-.,Alllln
// EEnEEERgy-
Y .
/ /I part labels inferred part labels
1 :/_A h
/" “parts” [LayoutCRF Winn et al. ’06]

Q:

 Many other examples:
e ObjCut [Kumar et. al. ’05]
 Deformable Part Model [Felzenszwalb et al.; CVPR ’08]
e PoseCut [Bray et al. "06]
* Branch&Mincut [Lempitsky et al. ECCV ‘08]

* Maximizing over hidden variables
vs. marginalize over hidden variables



Random field models

4-connected; higher(8)-connected; Higher-order RF
pairwise MRF pairwise MRF
E(x) = Y 6;;(x.x;) E(x) = Y, 8, (x.X;) E(x) =iJZ€NeLi (X:.X;)
i,j € N, i'j € Ng ' 4

+O(x4,....X,)
Order 2 Order 2 Order n

o H H ” .
Pairwise energy “higher-order energy”




Why Higher-order Functions?

In general 6(x;,x,,x3) # O(x;,x,) + O(x;,x3) + O(x,,x3)

Reasons for higher-order MRFs:

1. Even better image(texture) models:
—  Field-of Expert [FoE, Roth et al. ‘05]
—  Curvature [Woodford et al. ‘08]

2. Use global Priors:
—  Connectivity [Vicente et al. ‘08, Nowizin et al. ‘09]
— Better encoding label statistics [Woodford et al. ‘09]
— Convert global variables to global factors [vicente et al. ‘09]



Reasonl: Better Texture Modelling

{ g

Higher Order Structure
not Preserved

1 .
h [ . . \ 1 k]
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Test Image Test Image (60% Noise) Result pairwise MRF ~ Higher-order MRF
9-connected

[Rother et al. CVPR ‘09]



Reason 2: Use global Prior

Foreground object must be connected:

- 4 -“ 4

User input Standard MRE: with connectivity
Removes noise (+)
Shrinks boundary (-)

if not 4-connected

E(x)=P(x)+h(x)  with h(x):{;o otherwise

[Vicente et al. '08
Nowozin et al. ‘09]



Reason 2: Use global Prior

Remember
bias of Prior:

LX¥ S e

Ground truth Noisy input

: wmhﬂw

TR i 1y
Introduce a global term,
which controls statistic

—

Pair-wise

|Xi—Xj| — [Woodford et. al. ICCV ‘09]



Random field models

4-connected; higher(8)-connected; Higher-order RF
pairwise MRF pairwise MRF
- _ E(x)=) 6. (x: x.
E(X) -i Zel t\?l‘] (xlli) E(x) "i ZelNelJ (XIIXJ) ( ) iijze:Ndf 1) ( | J)
J 4 J 8 +e(x1’___’xn)
Order 2 Order 2 Order n
“Pairwise energy” “higher-order energy”

.... all useful models,
but how do | optimize them?



Advanced CRF system

research.microsoft.com/unwrap

Rav-Acha | Kohli | Rother | Fitzgibbon

http://

W
o
=
3]
7
-
=
]
E
-

£ Microsoft Research 2004

[Unwrap Mosaic, Rav-Acha et al. Siggraph '08]



Detour: continuous variables and
continuous domain



Gaussian MRFs: continuous-valued MRFs

EC) = 18, (x,.2) + WY, 8 (x,x) ¢
X € R 5
Convex unary and pairwise terms: il =
0, (xi.x;) = g(lxi'le) >T
6, (x..z) = Ix;-z g
Can be solved globally optimal, e.g. gradient decent X

TRW-S HBF [Szelsiki ‘06]
(discrete labels) (continuous labels)
~ 15times faster

original



Field-of-Expert
[Roth et al. ‘05]
A non-convex model ...

Linear filters

/ 0182 0.158 0.155 0.148 0113
. AN EE
[T 120 <) e,

0112 0102 0104 0.0&3 0.0E8

1
pF‘nE(X; )= m

N\ m o IR
Sum over Non-convex Linear filters
patches function

,'H
FoE Smoothing MRF
[Bertalmio et al., Siggraph ‘00]

Inpainting results

Optimization: gradient decent, BP, fusion move



Continuous Domain

SONININININN
AN N
AN AN
AN N
NN N
SOINININININN
SNIONNININININN
RANAANANANANAN
Image u (zoom) Piece-wise linear MRF factor graph
functions f (zoom) (cliques for smoothness term)

Energy: E(f;u) =‘fQ(f — u)Z’ +\ fQ IVF] ’
Y |

Convex data- Total variation
term smoothness

from [Schelten and Roth CVPR’11]



Continuous Domain

Advantages: Disadvantages:
* Energy is independent of the * World is continuous ... but then you have to
pixel grid model the image formation process (e.g.

camera PSF, etc).

e Fast GPU solvers have been
developed e So far no learning (since no probabilistic

interpretation)

* \Variational models are rather simple (1%
and 2" - order derivatives). Advanced
discrete models, e.g. FOE, are so far
superior.

More to come in Andrew Fitzgibbon’s lecture ...

from [Schelten and Roth CVPR’11]



Outline

Introduction to Random Fields
MRFs/ CRFs models in Vision
Optimisation techniques
Comparison



Why is good optimization important?

Input: Image sequence

Output: New view

Problem: Minimize a binary 4-connected pair-wise MRF
(choose a colour-mode at each pixel)

[Fitzgibbon et al. ‘03]



Why is good optimization important?

Ground Truth Graph Cut with truncation Belief Propagation ICM, Simulated

[Rother et al. ‘05] F Annealing

QPBOP [Boros et al. ’06, Rother et al. ‘07]
Global Minimum



Recap

E(x) = Z fi (<)[+ Z gij (Xi.x;) + ZC: h.(x.)

Unary Pairwise Higher Order

Label-space:

Binary: x;€{0,1}
Multi-label: x; € {0,...,K}



Inference — Big Picture

 Combinatorial Optimization
— Binary, pairwise MRF: Graph cut, BHS (QPBO)
— Multiple label, pairwise: move-making; transformation
— Binary, higher-order factors: transformation

— Multi-label, higher-order factors:
move-making + transformation

e Dual/Problem Decomposition

— Decompose (NP-)hard problem into tractable once.
Solve with e.g. sub-gradient technique

* Local search / Genetic algorithms
— ICM, simulated annealing



Inference — Big Picture

 Message Passing Techniques

— Methods can be applied to any model in theory
(higher order, multi-label, etc.)

— BP, TRW, TRW-S

e LP-relaxation

— Relax original problem (e.g. {0,1} to [0,1])
and solve with existing techniques (e.g. sub-gradient)

— Can be applied any model (dep. on solver used)

— Connections to message passing (TRW) and
combinatorial optimization (QPBO)



Inference — Big Picture:
Higher-order models

* Arbitrary potentials are only tractable for order <7
(memory, computation time)

* For 27 potentials need some structure to be

exploited in order to make them tractable
(e.g. cost over number of labels)



Function Minimization: The Problems

 Which functions are exactly solvable?

* Approximate solutions of NP-hard problems



Function Minimization: The Problems

 Which functions are exactly solvable?

Boros Hammer [1965], Kolmogorov Zabih [ECCV 2002, PAMI 2004] , Ishikawa [PAMI| 2003],
Schlesinger [EMIMCVPR 2007], Kohli Kumar Torr [CVPR2007, PAMI 2008] , Ramalingam Kohli
Alahari Torr [CVPR 2008] , Kohli Ladicky Torr [CVPR 2008, 1JCV 2009], Zivny Jeavons [CP 2008]

e Approximate solutions of NP-hard problems

Schlesinger [1976 |, Kleinberg and Tardos [FOCS 99], Chekuri et al. [2001], Boykov et al. [PAMI
2001], Wainwright et al. [NIPS 2001], Werner [PAMI 2007], Komodakis [PAMI 2005], Lempitsky et
al. [ICCV 2007], Kumar et al. [NIPS 2007], Kumar et al. [ICMIL 2008], Sontag and Jakkola [NIPS
2007], Kohli et al. [ICML 2008], Kohli et al. [CVPR 2008, IJCV 2009], Rother et al. [2009]



Message Passing Chain:
Dynamic Programming

f(Xp) + gpq (Xp.Xq) with Potts model g, =2 ( x, #x,)

@=o——c

Ly MposqlLe) = mxin f (Xp) + Gpq (Xp. L1)
P

= min (5+0, 1+2, 2+2)

Mp-)q(Llr L21L3) - (3 1112)



Message Passing Chain:
Dynamic Programming

f(Xp) + gpq (Xp.Xq) with Potts model g, =2 ( x, #x,)

@=o——c

L




Message Passing Chain:

Dynamic Programming
Mq_)r‘ (L|) = r‘;\(in AAp->q + f (xq) + 9qr‘ (XqiLi)
q

w
Get optimal labeling for X.. :

min M.+ f (x.)
xr‘

This gives min E

|

Trace back path to get minimum
cost labeling x

Global minimum in linear time ©



BP on a tree
[Pearl’88]

@ leaf

® @ 0 ®

leaf root

 Dynamic programming: global minimum in linear time

* BP:
— Inward pass (dynamic programming)
— Outward pass



Inward pass (dynamic programming)

00 0 ®




Inward pass (dynamic programming)

5

)
=
Cr
®



Inward pass (dynamic programming)

©
MS->I"
——————@

N




Inward pass (dynamic programming)




Outward pass




BP in a general graph
* Pass messages using same rules O O O

— Sequential schedule
— Parallel schedule

— Initialize messages <>:C>:<>
* May not converge ()_1)_()

e Speed-up tricks [Felzenschwalb et al ‘04]

— Naive implementation O(K?)

— O(K) for Potts model, truncated linear/quadratic




Tree-reweighted Message passing (TRW)
[Wainwright, Kolmogorov]

O—Q =0 OO0
O—O O O 0O0—O

— BP on trees (can be seen as changing energy; re-parametrization)
— node averaging (another re-parametrization)
(see ICCV’07, ‘09 tutorials)

* Provides a lower bound

Lower Bound < E(x*) < E(x’)

e Tries to solve a LP relaxation of the MAP problem



Message Passing Techniques

: L
* Exact on Trees, e.g. chain % =

[Felzenschwalb et al ‘01]

* Loopy graphs: many techniques: BP, TRW, TRW-S,
Dual-Decomposition, Diffusion:

— Message update rules differ
— Compute (approximate) MAP or marginals P(x; | x\\q;)

— Connections to LP-relaxation (TRW tries to solve MAP LP)

* Higher-order MRFs: Factor graph BP N\ ot

node to
factor

[See details in tutorial ICCV 09, CVPR ‘10]



Combinatorial Optimization

Binary, pairwise

— Solvable problems

— NP-hard

Multi-label, pairwise

— Transformation to binary
— move-making

Binary, higher-order

— Transformation to pairwise
— Problem decomposition

Global variables



Binary functions that can be solved exactly

Pseudo-boolean function f:{0,1}" —> R is submodular if

f(A) + f(B) 2 f(AVB) + f(AAB) | forall AB € {0,1}"

(OR) (AND)

Example: n=2, A =[1,0],
f([1.0]) + f([0.1]) 2 f([1,1]) + £([0.0])

Property : Sum of submodular functions is submodular

Binary Image Segmentation Energy is submodular

E(x) = Z C; X; + Z d; |xi‘xj|
| L




Submodular binary, pairwise MRFs:

Maxflow-MinCut or GraphCut algorithm [Hammer et al. ‘65]

Graph (V, E, C)
Vertices V = {vq, v, ... V,;}
Edges E = {(v4, v,) ...}
Costs C = {c( 2) ...}




The st-Mincut Problem

What is a st-cut?




The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
fromStoT




The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
fromStoT

What is the st-mincut?

st-cut with the
minimum cost




So how does this work?
Construct a graph such that:

1. Any st-cut corresponds to an assignment of x
2. The cost of the cut is equal to the energy of x : E(x)

3. Find min E, min st-cut .
S st-mincut

@
T

Solution

[Hammer, 1965] [Kolmogorov and Zabih, 2002]



st-mincut and Energy Minimization

E(x) = 29 (x;) +

Forallij [ 8,(0.1) +8;(10) >6;(0.0) + 6, (1.1)

Equivalent (fransform to I
“normal form")

E(x) = ) cx; + c'i(1-x)+ > ¢ x(1-x;)
i i,J

¢; ¢; €{0,p}
with p20

C;i

[Kolmogorov and Rother ‘07]



Example

E(vi,v2) = 2vy + 5(1-v )+ 9v, + 4(1-v,)+ 2vi(1-vy)+ (1-vy)v,



Example

optimal st-mincut: 8

vi=1 v,=0

E(1,0) =8

E(vi,v2) = 2vy + 5(1-v)+ 9v, + 4(1-v,)+ 2vi(1-vy)+ (1-vy)v,



How to compute the st-mincut?

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Solve the maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Assuming non-negative capacity



Augmenting Path Based Algorithms

Flow=0




Augmenting Path Based Algorithms

Flow=0

1. Find path from source to sink
with positive capacity




Augmenting Path Based Algorithms

Flow=0+2

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path




Augmenting Path Based Algorithms

Flow =2

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path




Augmenting Path Based Algorithms

Flow =2

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms

Flow =2

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms
Flow=2+4

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms

Flow =6

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms

Flow =6

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms
Flow =6 + 2

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms

Flow =8

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found




Augmenting Path Based Algorithms

Flow =8

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Saturated edges give the minimum cut. Also flow is min E.




History of Maxflow Algorithms

and n: #nodes
year | discoverer(s) bound
m: #edges
1951 O(n<mU) &
1955 | Ford & Fulkerson O (m3U) U: maximum edge
1970 | Dinitz O(n*m) weight

1972 | Edmonds & Karp O(m<logl)

1973 | Dinitz O(nmlog U)

1974 | Karzanov O(n>)

1977 | Cherkassky O(n*mt/<)

1980 | Galil & Naamad O(nmlog*n)

1983 | Sleator & Tarjan O(nmlog n)

1986 | Goldberg & Tarjan O(nmlog(n</m))

1987 | Ahuja & Orlin O(nm 4 n“logU)

1987 | Ahuja et al. O(nmlog(ny/log U /m))

1989 | Cheriyan & Hagerup | E(nm 4 n*log“n)

1990 | Cheriyvan et al. O(n*/logn)

1990 | Alon O(nm + n®/>logn)

1992 | King et al. O(nm 4+ n<™*)

1993 | Phillips & Westbrook | O(nm(109,,/mn + 1097 n))

1994 | King et al. O(nmlog,, /(niogn) 1)

1997 | Goldberg & Rao fﬂ::;:j E |':}(_]|:H£. m)logl)
O(n*Pmlog(n?/m)logl )

Computer Vision problems: efficient dual search tree augmenting path algorithm
[Boykov and Kolmogorov PAMI ‘04] O(mn?|C|) ... but fast in practice: 1.5MPixel per sec.
[Slide credit: Andrew Goldberg]



Minimizing Non-Submodular Functions

E(x) = Z 6, (x) + Z 0;; (xi.x;)
i i,

6,(0,1) + 8, (1,0) < 6,(0,0) + 6, (1,1) for some ij

* Minimizing general non-submodular functions is
NP-hard.

« Commonly used method is to solve a relaxation of the
problem



Minimization using Roof-dual Relaxation

E(fx,}) =6, (x,) R oy

0,,(00)+6,.(1L1) < 6,.(01)+6,.(10)

+ ) O
Z pg(¥p>%g) pairwise submodular

+3°6, (x,,%,) 6,,(0,0)+6,,11) > 6,.(01) +6,,(L0)

pairwise nonsubmodular

[Boros, Hammer, Sun '91; Kolmogorov, Rother ‘07]



Minimization using Roof-dual Relaxation
(QPBO, BHS-algorithm)

Double number of variables: Xy = Xy X

E({x,})=>.0 (x,) 6,(x,)+6,(1-x,)

E'({x,}.{x;3)= 2,

2
+Zt9 (xp, g # Z 8,,(%,,%, )+19;?(1—xﬁ,l—x§)
+Z9 (xp? g +Zﬁpq(xp,l—xi)j;é‘m(l—xﬁ,xq)

E({zp}) = E'({zp}, {ap}) if 25 =1 —mp

(you will prove that in an exercise)

[Boros, Hammer, Sun '91; Kolmogorov, Rother ‘07]



Example of the Graph

source

P

sink



Minimization using Roof-dual Relaxation
(QPBO, BHS-algorithm)

* Output: original x;, € {0,1,?} (partial optimality)

X, =1-x;| )

Yp

is the optimal label

e Solves the LP relaxation for binary pairwise MRFs
» Extensions possible QPBO-P/I [Rother et al. ‘07]



Example result

& A /% '
Ground Truth  Ground Truth (zoom) QPBO (0.7s) Graph Cut (0.3s)

. . QPBO (37.1% unlabeled)
Dlagram recognltlon:

2700 test cases (QPBO nearly solves all) ?___,___F;_]____ﬂ
L; T



What is the LP relaxation approach?
[Schlesinger’76]

Write MAP as Integer Program (IP)

e Relax to Linear Program (LP relaxation)

Solve LP (polynomial time algorithms)

Round LP to get best IP solution (no guarantees)

(valid for binary and multi-label problems)



MAP Inference as an IP

min [Z Vp(a)ﬂjpﬂ + Z qu(ﬂa b)l'pq,ab

ac L a,be L

Indicator vectors:  Tp a. Tpg.ab € 10,1}
Example: Xp =1

X, 6=0, X, ;=1 Integer Program

p.17



MAP Inference as an IP

min [Z Vo(a)zp.a + Z Vpg(a,0)xpg.ab

ac L a,be L

S.t. E 4 = 1
aclL D0
€I =T
E acl pq.ab q.b

E X, =X
beL pq.ab p.a

Indicator vectors: Zp.a, Tpg.ab € {0,1}
Example: X, = 1
XP,O:O’ X

p.L~

Integer Program



Relax to LP

min [Z Vo(a)zp.a + Z Vpg(a,0)xpg.ab

ac L a,be L

S.t. E :(IEL Lp,a — 1 XP,O:
Z(lé I :Ep(l-ab — m(l-b Xp,q,O,l‘
£, b = &
Pq.a p,a

ZI)EL XPII:O y i
Indicator vectors: | Tp.q = 0, Tpg.ap = 0 p.q11=
Example: Xp =1 )

X, 6=0, X, ;=1 Linear Program

* Solve it: Simplex, Interior Point methods, Message Passing, QPBO, etc.
* Round continuous solution




Relax to LP

min [Z Vo(a)zp.a + Z Vig(a, b)Zpg.ab

ac L a,be L

8.5, E 4 s = 1
a€ L PG
E €T =1
acL pq.ab q.b

E :beL Lpg,ab = Tp,a

Indicator vectors:  Tp.q = 0, Tpg.ab =

Example: Xp =1
XPIO:O’ Xp,1:1

Solve it: Simplex, Interior Point methods, Message Passing, QPBO, etc.

* Round continuous solution




A binary example

No unary terms

0 1
P (
" ; All pairwi >
pairwise: al 1 | o
17 ¢ Optimal relaxation

pl X400 g

Xp,O
1
value = -2
1
r 05 r |value=0.5*%6=-3
MAP solution

Recent effort: Tightening LP relaxation, e.g. [Sontag et al. ‘08]



Combinatorial Optimization

Binary, pairwise

— Solvable problems

— NP-hard

Multi-label, pairwise

— Transformation to binary
— move-making

Binary, higher-order

— Transformation to pairwise
— Problem decomposition

Global variables



Example: transformation approach

Transform exactly: multi-label to binary

Labels: |; .... I,

variables: X; .... X

New nodes: n * k

[Ishikawa PAMI ‘03]



Example transformation approach

E(x) = Z 0 (x)) + 2.9 (Ixi'le)
i i,

) Problem: not discontinuity
Exact if g convex: preserving

g(lxi-le) ‘/ m

|xi'xj| — No truncation with truncation
(global min.) (NP hard
optimization)




Exact Solutions for Multi-label Problems

Other “less known” algorithms

Ishikawa Arbitrary Convex and
Transformation [03] Symmetric
Schlesinger Arbitrary Submodular
Transformation
[06]
6;j(laly) + 65 (lulj1) = 65 (11 + 65 (liu.].1)
Hochbaum
[01] = . +1
I- +1 — 0”’ J
17 T, S
Hochbaum R
[01] I “’,‘ [ lJ
i —




Energy

Move Making Algorithms

Solution Space




Energy

Move Making Algorithms

O Current Solution

| .......... Search
Neighbourhood

-------- » Optimal Move

Solution Space



Iterative Conditional Mode (ICM)

E(x) = 012 (X1,%2)* B13 (X1, X3)+
14 (X1.X4)*+ B15 (X1, X5)*...

Very local moves get stuck in local
minima

J 3
A
s
(4
: j
\
N L -

ICM Global min.

: accept move even if
energy increases (with certain probability)




Graph Cut-based Move Making Algorithms

Move Space (t) : 2"

Space of Solutions (x) : L"

Current Solution
Search Neighbourhood

Number of Variables

Number of Labels

[Boykov , Veksler and Zabih 2001]



Status:

Expansion Move

e Variables take label o or retain current label

MipiatideSlopbaTee

—p [ Tree
—p [ Ground
— House

—p [ Sky

[Boykov , Veksler and Zabih 2001]



Example

S 25 el

Expansion



Expansion Move

* Move energy is submodular if:

— Unary Potentials: Arbitrary

— Pairwise potentials: Metric

0, (
6
0, (

a

a

a

a:Ib
2020

b) - O |ff
b) = eij (I,
b) * eij (Iy.

) 2 6; (1)

Examples: Potts model, Truncated linear
(not truncated quadratic)

Other moves: alpha-beta swap, range move, etc.

[Boykov , Veksler and Zabih 2001]



Fusion Move:
Solving Continuous-valued Problems

X = tx!+(1-t) x2

1 2 ;
X+, X* can be continuous Optical Flow

Example
Solution
from
Method 2
Solution
from Final
Solution

. -
Method 1 x! r—4 l




Combinatorial Optimization

Binary, pairwise

— Solvable problems

— NP-hard

Multi-label, pairwise

— Transformation to binary
— move-making

Binary, higher-order

— Transformation to pairwise
(arbitrary < 7, and special potentials)

— Problem decomposition
Global variables



Example: Transformation with factor size 3

f(X1.X5,X3) = 0,:X 1 XoX3 + 00X X5(1-X3) + 0,0,%,(1-X,)x5 + ...

f(x1,X%5,%3) = aX1XpX3 + bx;X, + CX,X5... + 1 |
|
Quadratic polynomial can be done

Idea: transform 2+ order terms into 2" order terms 5
Many Methods for exact transformation

Worst case: exponential number of auxiliary nodes

(e.g. factor size 5 gives 15 new variables [Ishikawa PAMI ‘09])

Problem: often non-submodular pairwise MRF




Example transformation

[Freedman and Drineas ‘05, Kolmogorov and Zabhi '04, Ishikawa "09]

f(X1.X2,X3) = axyXpX3 + bXyX; + CXpX3... + 1
[

9(X1.X2.X3)
Useful :
-X1XX3 = mzin =Z(X*+X,*+X3-2) z¢{0,1}
Check:

 all X;,X,,X3=1 then z=1
e Otherwise z=0 submodular

Transform: . / non-submodular
Case a<0: g(xl,XZ,X3) =min -az (X1+X2+X3—2) /
Z

Case a>0: g(Xxq,X2,X3) = mzin a{ Z(X 1+ X+ X 3-1)+(X X+ XX 3+ X 3%, )-(X 1+ X+ X5+1)}
(similar trick)



Special Potential: Label-Cost Potential

[Hoiem et al. ’07, Delong et al. "10, Bleyer et al. ‘10]

4 . . bag N
; . ¢ . \
7 b
[/ — 2
o gl
/i 4 v’
3
i
/
.~ o
\ ’ =
- 5 AN
» . ;
I ’ - ’
- . > Y
« >, —
i . n_'v
IS N ~ v
3 A o ~M ¥y
A e e X o e |

Grabcut-style result With cost for each new label

[Delong et al. "10]
(Same function as [Zhu and Yuille “96])

Label cost = 10c

Label cost = 4c

E(x) = P(x)+ z C [ap xp: | ] E: {1,..L}) >R

“nairwise | €L
MRF”

“Label cost”

Transform to pairwise MRF with one extra node (use alpha-expansion)

Basic idea: penalize the complexity of the model
e  Minimum description length (MDL)
* Bayesian information criterion (BIC)

[Many more special higher-order potentials in tutorial CVPR "10] From [Delong et al. ’10]



P" Potts - Image Segmentation

-

.
n = number of pixels

E: {0,1}» - R
0 —fg, 1-bg

-~

- - "

Unary Cost Segmentation

[Boykov and Jolly * 01] [Blake et al. ‘o4] [Rother et al. 04]



P" Potts Potentials

E E N
a4
Patch Dictionary
(Tree)
|f Xi - O, | € p
[h(X )3 { C..x OTherwise
Crnax 2 O

[slide credits: Kohli]



P" Potts Potentials

n = number of pixels\
E: {0,1})» >R
0 —»fg, 1-bg

E(X) = Z C; X; + Z d;; |xi"‘j| + ) hy (X,)
i I, p

o OTherwise

{h(xp): {g if x,=0,iep

P

[slide credits: Kohli]



Image Segmentation

.
n = number of pixels

E: {0,1}» - R
0 —»fg, 1—bg

g

E(X) = Z Ci X; + Z d;; lxi'le + ) hy (Xp)
i i) p

Pairwise Segmentation Final Segmentation

[slide credits: Kohli]



Application:
Recognition and Segmentation

Image One super-  another super-
pixelization  pixelization

Unaries only Pairwise CRF only P Potts

TextonBoost [Shotton et al. ‘06]
[Shotton et al. ‘06]

Sky

Road

robust P" Potts robust P" Potts . .
(tarant £) from [Kohli et al. '08]



Generalizing P" Potts model

A

FC x;) concave

-
© 2 X
Transform to

submodular
pair-wise MRF

See more details in: [Kohli et. al. CVPR ‘07, ‘08, PAMI ’08, 1JCV ‘09]



Problem/Dual Decomposition

* Well known in optimization community [Bertsekas 95, ‘99]
 Other names: “Master-Slave” [Komodiakis et al. ‘07, ’09]

 Examples of Dual-Decomposition approaches:

— Solve LP of TRW [Komodiakis et al. ICCV ‘07]

— Image segmentation with connectivity prior [Vicente et al CVPR ‘08]

— Feature Matching [Toressani et al ECCV ‘08]

— Optimizing Higher-Order Cligue MRFs [Komodiakis et al CVPR ‘09]

— Marginal Probability Field [Woodford et al ICCV ‘09]

— Jointly optimizing appearance and Segmentation [Vicente et al ICCV 09]



Dual Decomposition

%@Ito optimize ] [ Possible to optimize } LP\c;ible to optimize ]

mxin E(x) = min [ Ei(x)+0OTx +E,(x)-0Tx]
> mm [E (%) +OTx,] + mm [E,(x,) - ©7x,] = L(B)

“Lower bound”

* Ois called the dual vector (same size as X)

* Properties:
« L(O) is concave (optimal bound can be found)

e @Goal: m%x L(e) < min E(X) MN\
X g“r

* If X;=X, then problem solved (not guaranteed)



Dual Decomposition

L(B) = m;n [Ei(x1) + ©Tx,] + min [Ea(x2) - 87,]

Subgradient Optimization [shor ‘85]:

Subproblem 1

X7 -min [Ey(x;) + 07x,]
X1

o

O = O + Ax;-X)

X;

“Master”

subgradient ]

Subproblem 2

o V24
X5 = m;” [Ea(x2) + 87x,] Slaves
2

* Guaranteed to converge to optimal bound L(0)

* Choose step-width A correctly ([Bertsekas "95])

* Pick solution X as the best of X; or X,

 E and L can in- and decrease during optimization

Energy

x 10"
28 —— Energy
—— Lower bound
2.55pF
2.5
2.45pF
2.4f

Example optimization



Example: Segmentation and Connectivity

Foreground object must be connected:

E(x) = Z 6, (x) + Z 0;; (xi.Xx;) + h(x)

h(x)= { oo if X not 4-connected
~ \ 0 otherwise

Zoom in

L-.

- - o - a4
User input Standard MRF Standard MRF
+h

[Vicente et al "08]



Example: Segmentation and Connectivity

Ell(X) Ezl(x)
oo if X not 4-connected

E(x) :,Z 6, (x;) + Z O;; (xi:xj)": h(x) | h(X)= Y0 otherwise
Derive Lower bound:
mxin E(x) = m)in [Eix)+0Tx +E,(x)-0Tx ]
2 mxin [Ei(xq) + ©6Tx;] + n’;jn [Ea(x2) - 67x,] = L(B)

Subproblem 1: Subproblem 2:

Unary terms + Unary terms + Connectivity
pairwise terms constraint

Global minimum: Global minimum: Dijkstra

GraphCut



Results: Segmentation and Connectivity

Global optimum 12 out of 40 cases.
(more complex decomposition used)

Extra

Image Input GraphCut Input GlobalMin

[Vicente et al "08]



Problem decomposition approach:
alternative to message passing

O—0Q  0—0 OO0
O—O O O O0—O

mxin E(x) = m)l'(n [Ei(x)+OTx + E,(x)-6Tx]

e Slightly different updates than TRW.

e solve LP relaxation of the MIAP problem (TRW not exactly)



results

¥ 10°

N AL

—— TRW-3

— TRW-T

— DD-MEF
10 20

(a) Estimated disparity (b) Energy and lower bound plots

x 10"

215

Bt 5.1

Nt A
!':'r.:_...-........................ 5']5 TH —S
PenTITTIiiiIIIIinIIIIIIr i vy
ITIIIIIIIIIN i — _
Crrr o T TRW-T
Proeooser st SRS
et PSS N R RIS SR DD-MRF
|t e A S I I | v e
| B ."._"ll"l.'l.'.'.'l'dnl.lllllllll- " 5

.'.-rllﬂ'.l'_.l'- .'I:I.' .: ot rrrrrn ]
e e R A T R L 10 20

{a) Estimated optical flow (b) Energy and lower bound plots

[Komodiakis et al '07]



Combinatorial Optimization

Binary, pairwise

— Solvable problems

— NP-hard

Multi-label, pairwise

— Transformation to binary
— move-making

Binary, higher-order

— Transformation to pairwise
(arbitrary < 7, and special potentials)

— Problem decomposition
Global variables



MRF with global potential

GrabCut model [Rother et. al. ‘04]

oF/8
E(x,67,6°) = 2 F.(6F)x;+ B,(88)(1-x;) +iIJ_Z€N|xi-xJ-|
F. = -log Pr(z,|6F)  B:=-log Pr(z,|68)
R A

Background /7 4

7=
KX/ K 7 Z25H)
DN L5 LT
M) YL AT
157 D

. 4 Foreground @

Image z Output X 6F/8 Gaussian
Mixture models

for unknown x,6F B8 the optimization is NP-hard! [vicente et al.'09]



MRF with global potential:
GrabCut - Iterated Graph Cuts

oF/8

min E(x, 6F, B8) m)i(n E(x, 6F, 68)

or.6° i

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. '06]

More sophisticated methods: [Lempitsky et al ‘08, Vicente et al ‘09]



MRF with global potential:
GrabCut - Iterated Graph Cuts

You will implement that in the practical session.




Transformation to other higher-order MRF

Color model

E(X, W) E'(X) = mvivn E(X, W)
Highly connected MRF Higher-order MRF
E(x,w): {0,1}"x {6MMs}— R

E(X,W) = 9,- (Xi,W) + 2 eij (Xi:xj) [Vicente et al; ICCV '09]



Transformation to other higher-order MRF

E(x)= g(in) +2 f(x,)+2 Neu (X:.X;) “Solve with dual-
i b |

\ K J€ decomposition”
|
E, E,
A
g4 convex o concave
i i —> >
0 n/2 n in 0 max inb

Prefers “equal area” segmentation Each color either fore- or background




Transformation to other higher-order MRF

Globally optimal in 60% of cases, such as...

[Vicente et al; ICCV '09]



Outline

Introduction to Random Fields
MRFs/ CRFs models in Vision
Optimisation techniques

Comparison



Comparison papers

Binary, highly-connected MRFs [Rother et al. ‘07]

Multi-label, 4-connected MRFs [Szeliski et al. ‘06,08]
all online: http://vision.middlebury.edu/MRF/

Multi-label, highly-connected MRFs [Kolmogorov et al. ‘06]


http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html

Comparison papers

Binary, highly-connected MRFs [Rother et al. ‘07]

Multi-label, 4-connected MRFs [Szeliski et al. ‘06,08]
all online: http://vision.middlebury.edu/MRF/

Multi-label, highly-connected MRFs [Kolmogorov et al. ‘06]


http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html

perc. unlabelled

Random MRFs

Three important factors:
o Unary strength: E(x) = w X 6, (x;) + X 6;; (x;.x;)
o Connectivity (av. degree of a node)
o Percentage of non-submodular terms (NS)

100 * [=QPBO: 8con 100 —=QPBO; 0.1% NS
— ! === QPBOP; 0.1% NS
g0l QPBO!D, 8con 5 80| —QPBO: 50% NS ]
== (PBO; 24con o . EAO
= == QPBOP; 50% NS
== (QPBOP; 24con ®
60r Q9 60
©
E
[b]
o0t < 20t
1\ 1

10 15 20 0 2 3

5 1'
Unary Strength Unary Strength



Computer Vision Problems

perc. unlabeled (sec) Energy € [0,999] (sec)

Applications QPBO QPBOP P+BP+I|Sim. An.| ICM GC BP

Diagram recognition (4.8con) 56.3% (0s) 0% (0s) GM 0(0s) [0(0.28s) | 999 (0s) 119 (0s) 25 (0s)
New View Synthesis (Scon) 39%0.7s) | 0% (1.4s)GM | 0(1.2s) | -(-s) ]999(0.25) [ 2(0.3s) | 18(0.65)
Super-resolution (8con) 0.5% (0.016s) 1 0% (0.047s) GM | 0(0.03s) | 7(52s) | 68 (0.02s) | 999 (Os) [0.03 (0.01s)

Image Segm. 9BC + 1 Fed Pixel (4con) [[ 99.9% (0.08s) | 0% (10.5s) GM | 0 (10.5s) | 983 (50s) | 999 (0.07s) [ 0 (28s) 28 (0.25)
Image Segm. 9BC; 4RC (4con) 1% (1.46s) | 0% (1.48s) GM | 0(1.48s) [ 900 (50s) | 999 (0.04s) [ 0 (14s) 24(0.2s)
Texture restoration (15con) 16.5% (1.4s) | 0% (145)GM | 0(14s) | 15(165s)| 636 (0.26) 1999 (0.05s)| 19 (0.18s)

Deconvolution 3 x 3 kernel (24con) || 45% (0.01s) 43% (0.4s) 1 0(04s) | 0(0.4s) | 14(0s) 999 (0s) 5(0.58)
Deconvolution 5 x 5 kernel (8Ocon) 80% (0.1s) 80% (9s) 813Is)| O(L3s) | 6(0.03s) | 999(0s) | 71(0.9s)

Conclusions:

* Connectivity is a crucial factor
e Simple methods like Simulated
Annealing sometimes best



Diagram Recognition (summeretai o

71 nodes; 4.8 con.; 28% non-sub; 0.5 unary strength

« 2700 test cases: QPBO solved nearly all
(QPBOP solves all)

Ground truth QPBOP (0sec) - Global Min.
QPBO: 56.3% unlabeled (0 sec) Sim. Ann. E=0 (0.28sec)

BP E=25 (0 sec) GrapCut E=119 (0 sec) ICM E=999 (0 sec)

&
;.

G A
;.



Binary Image Deconvolution

50x20 nodes; 80con; 100% non-sub; 109 unary strength

CVFR

Ground Truth
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

5x5 blur kernel

Input

MRF: 80 connectivity - illustration



Binary Image Deconvolution

50x20 nodes; 80con; 100% non-sub; 109 unary strength

CVFR

Ground Truth

Input

QPBO 80% unlab. (0.1sec)

CVPR

r -

QPBOP 80% unlab. (0.9sec)

ICM E=6 (0.03sec)

E.

CVFPR

BP E=71 (0.9sec)

QPBOP+BP+l, E=8.1 (31sec)

GC E=999 (0sec)

CvFR

Sim. Ann. E=0 (1.3sec)



Comparison papers

Binary, highly-connected MRFs [Rother et al. ‘07]
Conclusion: low-connectivity tractable: QPBO(P)

Multi-label, 4-connected MRFs [Szeliski et al ‘06,'08]
all online: http://vision.middlebury.edu/MRF/

Multi-label, highly-connected MRFs [Kolmogorov et al ‘06]


http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html

Multiple labels — 4 connected

“Attractive Potentials”

stereo

Panoramic
stitching

Image
Segmentation;
de-noising;
in-painting

[Szelsiki et al '06,08]



Stereo

140%

125%
135%
120%
130% -
—a— |CM —=_ICM
0y X
SR :gj 115% «— BP-S 125% -
—.—
—— Swap 110% :P'M 120%
+— Expansion gl : 115%
—«— TRW-S 105% | —«— Expansion
—+— lowerBound | —s— TRW-S 110%
- —— lowerBound 105%
05% 100%
1s 10s 100s 1000s 95%

image Ground TRW-S Ground TRW-S
truth truth

Conclusions:

— Solved by alpha-exp. and TRW-S
(within 0.01%-0.9% of lower bound — true for all tests!)

— Expansion-move always better than swap-move




De-noising and in-painting

—=—|CM
—o—BP-8
—=—BP-M
—+— Swap

+«— Expansion
——TRW-S
—— lowerBound

a
104% b
ifrrefee T v —+BP-P
iy R N 1 . S
102% | s
&
101%
100% |

1s 10s 100s 1000s

Ground truth Noisy input

Conclusion:

— Alpha-expansion has problems with smooth areas
(potential solution: fusion-move [Lempitsky et al. ‘07])




Panoramic stitching

* Unordered labels are (slightly) more challenging

8000%

7000%
—a—ICM 6000%
=l 5000%
—s— BP-M
—+— Swap 4000%
—— Expansion iR
—»—TRW-S

| —— lowerBound | 2000%

Expansion



Comparison papers

Binary, highly-connected MRFs [Rother et al. ‘07]
Conclusion: low-connectivity tractable (QPBO)

Multi-label, 4-connected MRFs [Szeliski et al ‘06,08]
all online: http://vision.middlebury.edu/MRF/

Conclusion: solved by expansion-move; TRW-S
(within 0.01 - 0.9% of lower bound)

Multi-label, highly-connected MRFs [Kolmogorov et al ‘06]



http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html

Multiple labels — highly connected

Stereo with occlusion:

E(d): {1,...0}" —R

Each pixel is connected to D pixels in the other image

[Kolmogorov et al. ‘06]



Multiple labels — highly connected

Tsukuba: 16 labels Cones: 56 labels
xio
-0
------------------------ +  a
0E o TR
- B o8 — :-:m:r Eound
[m7} — ]
E '151-;*- — E-"
= e -
w L
- 155k -1.2
+ QG
- 1=k T A1) N el L [
mmmfp ] —
| cwiEr Boond -
-15 L L I K | _ Jp i
o oo =m am «m ¥ rran e am gm0 1200 1600 2000fs4pp0
Time in seconds Time in seconds

* Alpha-exp. considerably better than message passing

Potential reason: smaller connectivity in one expansion-move 0 % 0
o #To oo TS [




Comparison: 4-con. versus highly con.

Tsukuba (E) | Map (E) Venus (E)
highly-con.  103.09% 103.28% 102.26%
4-con. 100.004% 100.056% 100.014%

Lower-bound scaled to 100%

Conclusion:
* highly connected graphs are harder to optimize



Comparison papers

* binary, highly-connected MRFs [Rother et al. ‘07]
Conclusion: low-connectivity tractable (QPBO)

 Multi-label, 4-connected MRFs [Szeliski et al ‘06,08]
all online: http://vision.middlebury.edu/MRF/
Conclusion: solved by alpha-exp.; TRW

(within 0.9% to lower bound)

* Multi-label, highly-connected MRFs [Kolmogorov et al ‘06]
Conclusion: challenging optimization (alpha-exp. best)

How to efficiently optimize general highly-connected

(higher-order) MREFs is still an open question



http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html

Decision Tree Fields
[Nowozin et al. ICCV ‘11 (oral)]

e Combine Decision Trees with Random Fields:

— represent all potentials (unary, pairwise, triple
cligue, etc.) with decision trees

* Key motivations:

— Discover the power of the “conditional aspects” of
random field models

— Derive a tractable model which can deal with large
amount of data



Decision Trees

Multi-class classifier

Simple binary feature test
at internal nodes

Empirical distribution
at leafs

Learning:
— Sample feature tests

— Split using Entropy

Inference:
“Run down” the tree —
read posterior from leaf




Decision Trees

Pros:

- non-parametric, high model capacity
- very efficient test-time
- very fast training (GPU)

Cons:

- conditional independence assumption
between decisions (pixels)

... how bad is that? ‘I I ; ‘| l S




Decision Tree Field (DTF)

OO © O

Graphical Model Random Field
Example: 5 factor types

Every factor type has one:

* Scope: relative set of variables it acts on
* Decision tree: tree with split functions

* Weight parameters: in each tree node




DTF - Energy

Example: pairwise factor

E, (xpzw, )= Z w,. (4, xF)
qEPath(z,)

Energy linear in w: w(3,+)

EtF(xF) Z, WtF) — (WtF' BtF(xF’ ZF))

BtF(xF' Zp) =

(NS S ESESEEE EESNSNSNSESNNSNSNSNNESEEEE EEEEE

w(4,) B

w(5,x)

sparse, binary vector
E. (Xp, 2, wp) = w(1,(1,2)) + w(2,(1,2)) + w(5,(1,2))




DTF — Special Cases

* Only unary factors = Decision Forest
e Zero-depth trees = MRF
* Conditional pair-wise = typical CRF



DTF - Inference

* MAP:

— Standard techniques (here: TRW-S)
after unrolling the graph

— Simulated annealing (no unrolling)

e Maximum Marginals:

— efficient Gibbs sampler (no
unrolling needed)




DTF - Learning

What to learn?

e Structure: what factor types to use
(currently: highly connected pairwise factors)

* Decision trees: what feature tests to use for splits
(currently: standard entropy splitting)

 Weights
(maximum (pseudo)-likelihood learning, since log-objective is
concave)



Toy Problem

Input Labeling

Snakes: demonstrate weak unaries @

Test Unaries Samples from unaries MRF DTF

LA ALY h

Labeli

Avg. acc. 90.3% 90.9%

‘ Tail acc. 100% 100%

Mid acc. 28% 28%




Results — Chinese Characters

Input Truth




Results — Chinese Characters

MRF DTF
Input Truth posterior MAP posterior MAP

Illll




Results — Kinect Body part labelling

I”

Goal: Encode “conditional” spatial layout of labelling

Input / Truth

MRF

DTF

So far:
30 images only

... we can train up to 1.5M weights in 22minutes




Visualizing conditional aspect

Silhouettes -
overlaid .
Weights at
one leave

Examples



That’s it...
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Another advertisement...

* |Internships at MSR Cambridge
* Typically 3 months

e Recommended for PhD students towards the
end of their studies



