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Main objective: how to count graphs with a given property

I Only consider finite undirected graphs without self-loops in
this talk.

I 2n(n−1)/2 such graphs on n vertices.

I Question: Given a property P and an integer n, roughly how
many of these graphs have property P?

I For example, P may be: #triangles ≥ tn3, where t is a given
constant.

I To make any progress, need to assume some regularity on P.
For example, we may demand that P be continuous with
respect to some metric.

I What metric? What space?
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Another motivation

I Let G (n, p) be the Erdős-Rényi random graph on n vertices
where each edge is added independently with probability p.

I Number of triangles in G (n, p) roughly
(n
3

)
p3 ∼ n3p3/6.

I What if, just by chance, #triangles turns out to be ≈ tn3

where t > p3/6? What would the graph look like, conditional
on this rare event?
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An abstract topological space of graphs

I Beautiful unifying theory developed by Lovász and coauthors
V. T. Sós, B. Szegedy, C. Borgs, J. Chayes, K. Vesztergombi,
A. Schrijver and M. Freedman. Related to earlier works of
Aldous, Hoover, Kallenberg.

I Let Gn be a sequence of simple graphs whose number of
nodes tends to infinity.

I For every fixed simple graph H, let hom(H,G ) denote the
number of homomorphisms of H into G (i.e. edge-preserving
maps V (H)→ V (G ), where V (H) and V (G ) are the vertex
sets).

I This number is normalized to get the homomorphism density

t(H,G ) :=
hom(H,G )

|V (G )||V (H)| .

This gives the probability that a random mapping
V (H)→ V (G ) is a homomorphism.
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Abstract space of graphs contd.

I Suppose that t(H,Gn) tends to a limit t(H) for every H.

I Then Lovász & Szegedy proved that there is a natural “limit
object” in the form of a function f ∈ W, where W is the
space of all measurable functions from [0, 1]2 into [0, 1] that
satisfy f (x , y) = f (y , x) for all x , y .

I Conversely, every such function arises as the limit of an
appropriate graph sequence.

I This limit object determines all the limits of subgraph
densities: if H is a simple graph with k vertices, then

t(H, f ) =

∫
[0,1]k

∏
(i ,j)∈E(H)

f (xi , xj) dx1 · · · dxk .

I A sequence of graphs {Gn}n≥1 is said to converge to f if for
every finite simple graph H,

lim
n→∞

t(H,Gn) = t(H, f ).
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Example

I For any fixed graph H,

t(H,G (n, p))→ p|E(H)| almost surely as n→∞.

I On the other hand, if f is the function that is identically equal
to p, then t(H, f ) = p|E(H)|.

I Thus, the sequence of random graphs G (n, p) converges
almost surely to the non-random limit function f (x , y) ≡ p as
n→∞.

Sourav Chatterjee Topics in concentration of measure: Lecture III



Example

I For any fixed graph H,

t(H,G (n, p))→ p|E(H)| almost surely as n→∞.

I On the other hand, if f is the function that is identically equal
to p, then t(H, f ) = p|E(H)|.

I Thus, the sequence of random graphs G (n, p) converges
almost surely to the non-random limit function f (x , y) ≡ p as
n→∞.

Sourav Chatterjee Topics in concentration of measure: Lecture III



Example

I For any fixed graph H,

t(H,G (n, p))→ p|E(H)| almost surely as n→∞.

I On the other hand, if f is the function that is identically equal
to p, then t(H, f ) = p|E(H)|.

I Thus, the sequence of random graphs G (n, p) converges
almost surely to the non-random limit function f (x , y) ≡ p as
n→∞.

Sourav Chatterjee Topics in concentration of measure: Lecture III



Abstract space of graphs contd.

I The elements of W are sometimes called ‘graphons’.

I A finite simple graph G on n vertices can also be represented
as a graphon f G is a natural way:

f G (x , y) =

{
1 if (dnxe, dnye) is an edge in G ,

0 otherwise.

I Note that this allows all simple graphs, irrespective of the
number of vertices, to be represented as elements of the single
abstract space W.

I So, what is the topology on this space?
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The cut metric

I For any f , g ∈ W, Frieze and Kannan defined the cut distance:

d�(f , g) := sup
S ,T⊆[0,1]

∣∣∣∣∫
S×T

[f (x , y)− g(x , y)]dxdy

∣∣∣∣.

I Introduce an equivalence relation on W: say that f ∼ g if
f (x , y) = gσ(x , y) := g(σx , σy) for some measure preserving
bijection σ of [0, 1].

I Denote by g̃ the closure in (W, d�) of the orbit {gσ}.
I The quotient space is denoted by W̃ and τ denotes the

natural map g → g̃ .
I Since d� is invariant under σ one can define on W̃ the natural

distance δ� by

δ�(f̃ , g̃) := inf
σ

d�(f , gσ) = inf
σ

d�(fσ, g) = inf
σ1,σ2

d�(fσ1 , gσ2)

making (W̃, δ�) into a metric space.
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Cut metric and graph limits

To any finite graph G , we associate the natural graphon f G and its
orbit G̃ = τ f G = f̃ G ∈ W̃. One of the key results of the is the
following:

Theorem (Borgs, Chayes, Lovász, Sós & Vesztergombi)

A sequence of graphs {Gn}n≥1 converges to a limit f ∈ W if and

only if δ�(G̃n, f̃ )→ 0 as n→∞.
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Our result

I For any Borel set Ã ⊆ W̃, let

Ãn := {h̃ ∈ Ã : h̃ = G̃ for some G on n vertices}.

I Let I (u) := 1
2u log u + 1

2(1− u) log(1− u).

I For any h̃ ∈ W̃, let I (h̃) :=
∫∫

I (h(x , y))dxdy , where h is any

element of h̃.

Theorem (Chatterjee & Varadhan, 2010)

The function I is well-defined and lower-semicontinuous on W̃. If
F̃ is a closed subset of W̃ then

lim sup
n→∞

n−2 log |F̃n| ≤ − infeh∈eF I (h̃)

and if Ũ is an open subset of W̃, then

lim inf
n→∞

n−2 log |Ũn| ≥ − infeh∈eU I (h̃).
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and if Ũ is an open subset of W̃, then

lim inf
n→∞
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Erdős-Rényi graphs

I Counting graphs can be related to finding large deviation
probabilities for Erdős-Rényi random graphs.

I For example,

#graphs on n vertices satisfying P

= 2n(n−1)/2P(G (n, 1/2) satisfies P).

I Indeed, the main result in our paper is stated as a large
deviation principle for the Erdős-Rényi graph, which can be
easily proved to be equivalent to the graph counting principle
stated before.
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easily proved to be equivalent to the graph counting principle
stated before.

Sourav Chatterjee Topics in concentration of measure: Lecture III
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Large deviation principle for ER graphs

I The random graph G (n, p) induces probability distribution

P̃n,p on the space W̃ through the map G → G̃ .

I Let Ip(u) := 1
2u log u

p + 1
2(1− u) log 1−u

1−p .

I For h̃ ∈ W̃, let Ip(h̃) :=
∫∫

Ip(h(x , y))dxdy , where h is any

element of h̃.

Theorem (Chatterjee & Varadhan, 2010)

For any closed set F̃ ⊆ W̃,

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − infeh∈eF Ip(h̃).

and for any open set Ũ ⊆ W̃,

lim inf
n→∞

1

n2
log P̃n,p(Ũ) ≥ − infeh∈eU Ip(h̃).
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Method of proof

I The LDP can be proved by standard techniques for the weak
topology on W̃. (Fenchel-Legendre transforms, Gärtner-Ellis
theorem, etc.)

I However, the weak topology is not very interesting. For
example, subgraph counts are not continuous with respect to
the weak topology.

I The LDP for the topology of the cut metric does not follow
via standard methods.
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Szemerédi’s lemma

I Let G = (V ,E ) be a simple graph of order n.

I For any X ,Y ⊆ V , let eG (X ,Y ) be the number of X -Y edges
of G and let

ρG (X ,Y ) :=
eG (X ,Y )

|X ||Y |
I Call a pair (A,B) of disjoint sets A,B ⊆ V ε-regular if all

X ⊆ A and Y ⊆ B with |X | ≥ ε|A| and |Y | ≥ ε|B| satisfy
|ρG (X ,Y )− ρG (A,B)| ≤ ε.

I A partition {V0, . . . ,VK} of V is called an ε-regular partition
of G if it satisfies the following conditions: (i) |V0| ≤ εn; (ii)
|V1| = |V2| = · · · = |VK |; (iii) all but at most εK 2 of the pairs
(Vi ,Vj) with 1 ≤ i < j ≤ K are ε-regular.

Theorem (Szemerédi’s lemma)

Given ε > 0, m ≥ 1 there exists M = M(ε,m) such that every
graph of order ≥ M admits an ε-regular partition {V0, . . . ,VK} for
some K ∈ [m,M].

Sourav Chatterjee Topics in concentration of measure: Lecture III
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Finishing the proof using Szemerédi’s lemma

I Suppose G is a graph of order n with ε-regular partition
{V0, . . . ,VK}.

I Let G ′ be the random graph with independent edges where a
vertex u ∈ Vi is connected to a vertex v ∈ Vj with probability
ρG (Vi ,Vj).

I Using Szemerédi’s regularity lemma, one can prove that
δ�(G ,G ′) ' 0 with high probability if K and n are
appropriately large and ε is small.

I Let f be the probability density of the law of G (n, p) with
respect to the law of G ′. (This is easily computed; gives rise
to the entropy function.) Then

P(G (n, p) ≈ G ) ≈ f (G )P(G ′ ≈ G ) ≈ f (G ).

I Since the space W̃ is compact, this allows us to approximate
P(G (n, p) ∈ A) for any nice set A by approximating A as a
finite union of small balls.
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Conditional distributions

Theorem
Take any p ∈ (0, 1). Let F̃ be a closed subset of W̃ satisfying

infeh∈eF o
Ip(h̃) = infeh∈eF Ip(h̃) > 0.

Let F̃ ∗ be the subset of F̃ where Ip is minimized. Then F̃ ∗ is
non-empty and compact, and for each n, and each ε > 0,

P(δ�(G (n, p), F̃ ∗) ≥ ε | G (n, p) ∈ F̃ ) ≤ e−C(ε,eF )n2

where C (ε, F̃ ) is a positive constant depending only on ε and F̃ .

Proof: Follows from the compactness of W̃ (a deep result of
Lovász and Szegedy, involving recursive applications of Szemerédi’s
lemma and martingales).
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Large deviations for triangle counts

I Let Tn,p be the number of triangles in G (n, p).

I Objective: to evaluate the limit

lim
n→∞

1

n2
log P(Tn,p ≥ (1 + ε)E(Tn,p))

as a function of p and ε.

I Exact evaluation of limit due to Chatterjee & Dey (2009): for
a certain explicit set of (p, t),

lim
n→∞

1

n2
log P(Tn,p ≥ tn3) = −Ip((6t)1/3),

when Ip(u) := 1
2u log u

p + 1
2(1− u) log 1−u

1−p .

I Unfortunately, the result does not cover all values of (p, t).
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Large deviations for triangle counts contd.

I Recall: W is the space of symmetric measurable functions
from [0, 1]2 into [0, 1].

I For each f ∈ W, let

T (f ) :=
1

6

∫ 1

0

∫ 1

0

∫ 1

0
f (x , y)f (y , z)f (z , x) dx dy dz

and let Ip(f ) =
∫∫

Ip(f (x , y))dxdy .
I For each p ∈ (0, 1) and t ≥ 0, let
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The ‘replica symmetric’ phase

Theorem (Chatterjee & Varadhan, 2010)

Let hp(t) := Ip((6t)1/3). Let ĥp be the convex minorant of hp. If t
is a point where hp(t) = ĥp(t), then φ(p, t) = hp(t). Moreover,
for such (p, t), the conditional distribution of G (n, p) given
Tn,p ≥ tn3 is indistinguishable from the law of G (n, (6t)1/3) in the
large n limit.

Remarks: This result recovers the result of Chatterjee & Dey and
gives more. However, the theorem of Chatterjee & Dey gives an
error bound of order n−1/2, which is impossible to obtain via
Szemerédi’s lemma.
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‘Replica symmetry breaking’

The following theorem shows that given any t, for all p small
enough, the conditional distribution of G (n, p) given Tn,p ≥ tn3

does not resemble that of an Erdős-Rényi graph.

Theorem (Chatterjee & Varadhan, 2010)

Let C̃ denote the set of constant functions in W̃ (representing all
Erdős-Rényi graphs). For each t, there exists p′ > 0 and ε > 0
such that for all p < p′,

lim
n→∞

P(δ�(G (n, p), C̃ ) > ε | Tn,p ≥ tn3) = 1.
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The double phase transition

Theorem (Chatterjee & Varadhan, 2010)

There exists p0 > 0 such that if p ≤ p0, then there exists
p3/6 < t ′ < t ′′ < 1/6 such that the replica symmetric picture
holds when t ∈ (p3/6, t ′) ∪ (t ′′, 1/6), but there is a non-empty
subset of (t ′, t ′′) where replica symmetry breaks down.
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The small p limit

The following theorem says that when t is fixed and p is very
small, then conditionally on the event {Tn,p ≥ tn3} the graph
G (n, p) must look like a clique.

Theorem (Chatterjee & Varadhan, 2010)

For each t,

lim
p→0

φ(p, t)

log(1/p)
=

(6t)2/3

2
.

Moreover, if
χt(x , y) := 1{max{x ,y}≤(6t)1/3}

is the graphon representing a clique with triangle density t, then
for each ε > 0,

lim
p→0

lim
n→∞

P(δ�(G̃ (n, p), χ̃t) ≥ ε | Tn,p ≥ tn3) = 0.
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Lower tails

I Given a fixed simple graph H,

lim
u→0

lim
n→∞

log P(t(H,G (n, p)) ≤ u)

n2
= − 1

2(χ(H)− 1)
log

1

1− p
,

where χ(H) is the chromatic number of H.

I Closely related to the Erdős-Stone theorem from extremal
graph theory.

I In fact, the precise result implies the following: given that
t(H,G (n, p)) is very small (or zero), the graph G (n, p) looks
like a complete (χ(H)− 1)-equipartite graph with
(1− p)-fraction of edges randomly deleted.

I However, if t(H,G (n, p)) is just a little bit below its expected
value, the graph continues to look like an Erdős-Rényi graph
as in the upper tail case.
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An application

I Exponential random graph models (ERGMs) popular in social
network literature

I Previously, could not be tackled mathematically.

I Using the LDP for Erdős-Rényi graphs, several such models
can be fully analyzed (joint work with Persi Diaconis).

I Gives interesting phase transitions, confirming predictions
from the non-rigorous literature.
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Open questions

I There are many questions that remain unresolved, even in the
simple example of upper tails for triangle counts. For example:

I What is the set of optimal solutions of the variational problem
defining the rate function in the broken replica symmetry
phase (i.e. where the optimizer is not a constant)?

I Is the solution unique in the quotient space W̃, or can there
exist multiple solutions?

I Is it possible to explicitly compute a nontrivial solution for at
least some values of (p, t) in the broken replica symmetry
region?

I Is it possible to even numerically evaluate or approximate a
solution using a computer?

I What is the full characterization of the replica symmetric
phase? What is the phase boundary?

I What happens in the sparse case where p and t are both
allowed to tend to zero?
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