Collections After
Eight

Maurice Naftalin

Morningside Light Ltd.
@mauricenaftalin

Maurice Naftalin

Developer, designer, architect, teacher, learner, writer

HOME = ABOUT THE LAMBDA FAQ ' ASK THE FAQ | LAMBDA RESOURCES

Maurice Naftalin's Lambda FAQ

Your questions answered: all about Lambdas and friends

Speed Up the Java Development Process

JEAZ
Generics

Recent Pos,tef The long debate about how to introduce lambda expressions (aka closures
and Collections How are conflicting method and virtual extension methods is planned to be feature-complete by t
declarations resolved? The biggest changes in the language since Java 5—at least—are not far aw
Do default methods introduce
T ——— e Napain multiple inheri® T " so that Phil Wadler anc
Shpmoe What are defa lections, will need a lot

Rt cover - What are cons WWW. I a m b d afaq ° O rg irst, so this FAQ is inte

Why the restri

Co-author .
Current Projects

Why is everyone so rude about us?

® “90% of all Java programs are written by morons.”

® “If Java had true garbage collection, most programs would delete
themselves upon execution.”

® “Lambdas aren’t a new invention so why did it take Java so long to
incorporate them? lIRC even COBOL had something like them.”

e “Sufficiently advanced Java is indistinguishable from satire.”

® “Java is the new Cobol”

Is it because we write code like this?

® Code plucked from a personal project

/| check each deadlined Plan. If it can’t be done in time for its deadline, return the Plan
I/ that caused the problem; otherwise, return null.

private Plan checkPlans(List<Plan> deadlinedPlans) {

Could we improve our image?

Wouldn’t it be cool if
instead of writing this:

t<Plan> de Private Optional<Plan> checkPlans(
List<Plan> deadlinedPlans) {

we could write this:

private Plan checkPlans(Lis
Plan problemPlan = null;

Iterator<Plan> planltr = deadlined

while (planltr.hasNext() && proble return deadlinedPlans.stream()
Plan plan = planltr.next(); .map(p -> checkPlan(p))

problemPlan = checkPlan(plan); filter(p -> p != null)
) findFirst();

return problemPlan; }
}

And easily make it execute in parallel??!

Presentation Overview

® The Magic Ingredient
® Result: Better APIs
® Result: More Parallelism

—

Take Va|ueS tO 3 higher Ol'de higher-order values

instead of supplying values to we're going to supply behaviour
specific library methods to general library methods:
public interface Collection<E> { public interface Collection<E> {

boolean removeAll(Collection<?> c); boolean removeAll(Predicate<? super E> p);

Predicate is an interface with a single abstract boolean-valued me

removeAll executes test for each element:

e if test returns true, removeAll removes that element

How to make an interface instance?

Using an anonymous inner class, of course!

planList.removeAll(new Predicate<Plan>(){
public boolean test(Plan p) {
return p.equals(problemPlan);

}
1)

Maybe this is why they’re so rude about us?

Let’s strip out the boilerplate!

planList.removeAll(p -> p.equals(problemPlan));

Why do we have to say we're supplying a Predicate?
Why do we have to say we’re implementing test, the only abstract method?
Why do we have to say the type parameter is Plan!?

So, lambdas are at least better syntax!

Presentation Overview

® The Magic Ingredient
® Result: Better APIs
® [nternal Iteration
® Pipes and Filters
® Composing Behaviours

® Result: More Parallelism

External Iteration

Standard Java loop forms:

. : Iterator<Plan> planltr = planList.iterator();
for (Plan plan 'PIanLISt) { — == While (planltr.hasNext()) {
plan.setSection(null); —— : .
planltr.next().setSection(null);

b i)

Problems:
* Client has to manage iteration—more complex than it looks

* Loop is inherently sequential
* client would have to manage parallelisation

Internal iteration

Strategy:

Supply behaviour to general library methods

planList.forEach(p -> p.setSection(null))

Much simpler interaction.
And now the library controls the iteration:
e Can use its own iteration tactics:

¢ Parallelism, out-of-order execution, laziness

Presentation Overview

® The Magic Ingredient
® Result: Better APIs
® [nternal Iteration
® Pipes and Filters
® Composing Behaviours

® Result: More Parallelism

Pipes and Filters

® Venerable Unix tool-building pattern:

ps -ef | grep login | cut -c 50- | head

® and in Enterprise Integration Patterns

S
v
S

Incoming
Order

Pipe

Pipe
Decrypt

Fiter

Authenticate

Fitter

Pipe

De-Dup

Fitter

Pipe

N\

'Clean’

Qrder

Pipes and Filters

Advantages of this pattern

ps -ef | grep login | cut -c 50- | head

no intermediate variables
less (or no) intermediate storage
lazy evaluation

flexible tool-building:

Write programs that do one thing well.

Write programs to work together.

Pipes & Filters in collection operations

deadlinedPlans.stream().map(p->checkPlan(p)).filter(p->p!=null).findFirst();

IntermediateO ‘ IntermediateOp TerminalOp
Source < >

Stream<Plan> ?\‘ Stream<Plan> 7\' Stream<Plan> 7\,
| | 1 | |

Instance of

Function<Plan.Plan> Instance of Predicate<Plan>

“Write programs that do one thing well”

java.util.functions.Function:

public interface Function<T, R> {
R apply(T t);
}

java.util.functions.Predicate

public interface Predicate<T> {
boolean test(T t);
}

- P L] 7 o~ [} N] - —

MapStreamlterator(Streamlterator<Plan> upstream, Function<Plan,Plan> m) {

i:.’.lan next() {

}

return m.apply(upstream.next());

No evaluation yet!

Lazy and eager operations

® Execution of lazy operations (IntermediateOps) sets the pipeline up

® Execution of eager operations (TerminalOps) pulls data down the pipeline

Stream<Plan> planStream =
deadlinedPlans.stream().map(p->preparePlan(p)).filter(p->p!=null);

planStream.findFirst(); // stop after the first element

Some Stream methods

I/ get the plans longer than |5 minutes
planStream filter(p -> p.getDuration().isLonger Than(minutes(15)))

I/ get the total duration of all the plans in a list
planStream.map(p -> p.getDuration()).reduce(Duration.ZERO, (d1,d2) -> dl.plus(d2))

/I get the first five plans
planStream.limit(10)

I get all but the first five plans
planStream.skip(10)

Some Stream methods

__name _

returns

interface used A signature

filter Stream<T> lazy |Predicate<T> T — boolean

map Stream<R> lazy [JFunction<T,R> T—-R

sorted Stream<T> lazy [|Comparator<T> (T, T) = boolean
limit,

<Ubstream Stream<T> lazy

reduce T eager |BinaryOperator<T> (T, TO » T
findFirst T eager |Predicate<T> T — boolean
forEach void eager |Consumer<T> T — void

Presentation Overview

® The Magic Ingredient
® Result: Better APIs
® [nternal Iteration
® Pipes and Filters
® Composing Behaviours

® Result: More Parallelism

Composing Behaviours

Sorting a list using Comparator:

Collections.sort(planList, new Comparator<Plan>() {
public int compare(Plan pl, Plan p2) {
return pl.getTask().compareTo(p2.getTask());
}

}

compare is monolithic

- combines key extraction with key comparison

Could we parameterise compare on the key extractor?

Composing Behaviours

Starting with a Comparator

pl.getTask().compareTo(p2.getTask());
}

We can factor out/the key extractor

Function<Plan;Task> taskGetter = p -> p.getTask();

Giving
taskGetter.apply(p1).compareTo(taskGetter.apply(p2));

—

Making methods more precise

Parameterising on the key extractor is already done for us:

In class java.util.Comparators:

public static <T,U> Comparator<T> comparing(Function<T,U> keyExtractor) {
return (cl, c2) -> keyExtractor.apply(cl).compareTo(keyExtractor.apply(c2));
}

This method accepts—and returns—behaviours!

And taskGetter.apply(pl).compareTo(taskGetter.apply(p2));

becomes Comparators.comparing(taskGetter);

Composing fine-grained methods

Can now fine-tune behaviours:

Comparator<Plan> byTask = Comparators.comparing(p -> p.getTask());
Comparator<Plan> byDuration = Comparators.comparing(p -> p.getDuration());

and combine them:

Collections.sort(planList, by Task.compose(byDuration));

and even better:
planList.sort(byTask.compose(byDuration));

Plan::getTask Plan::getDuration

Presentation Overview

® The Magic Ingredient
® Result: Better APIs

® Result: More Parallelism

Example: ConcurrentHashMap

- Methods: forEachInParallel, forEachEntryInParallel,
forkEachKeyInParallel, forEachValuelnParallel,...

= Consider forEachValueInParallel(Consumer<? super V> action)
— Creates a new ForEachValueTask
— subclass of ForkJoinTask
— submits that to the ForkJoinPool

— ForkJoinPool executes ForEachValueTask on one of its threads

ConcurrentHashMap . ForEachValueTask

public final void compute() {
final Consumer<? super V> action;
if ((action = this.action) != null) {
for (int b; (b = preSplit()) > 0;)
new ForEachValueTask<K,V>(map, this, b, action).fork();
forEachValue(action);
propagateCompletion();
}
}

Stream parallelisation

pIanLlst paraIIeISt_r(.).map(..)reduce();

fork
fork

fork

«—
=

! !
i i i

{ i

i i
i
31
i
i

«

Conclusion

Lambdas seem like a small syntactic change, but—
® a big difference in the style of Java code
® set the library writers free to innovate
® encourage a functional coding style

® |ess mutability = more parallel-friendly

Resources

Lambda resources

This is a selective list of online documents and resources relevant to Project Lambda.

Documentation
The central reference for Project Lambda is the OpenJDK page. Its primary links are to:

JSR 335 Early Draft Review 2. This consists mainly of the changes that the Java Language Specification will require for Project Lambda;

State of the Lambda v4. This is an informal and readable introduction to the language features of Project Lambda, written by the project lead, but is becoming out-of-date as the project evolves. The material in it is covered in this FAQ;
State of the Lambda: Libraries Edition. As with State of the Lambda, this is becoming out-of-date. Its content is not yet covered by this FAQ (but it will be soont);

A full and informative description of the design of default methods({PDF) and its rationale;

A formal model for default method linkage(PDF);

The strategy for translating lambda expressions.

The Java Community Process has formal progress pages for ISR 335 and JEP 107 (JDK Enhancement Proposal for providing the collections library with bulk operations).

JDK build and download resources

JavaDoc and binaries for Windows, Mac, Linux and Solaris can be downloaded from http://jdk8.java.net/lambda/. These are sometimes, but not always, up-to-date; if you need a more up-to-date version: WWW. I a m b d afaq . o rg/ re S O u rc e S
T

daily binary builds for Linux can be found at http://obuildfactory.hgomez.net/

instructions for building Mac binaries from source at https://github.com/hgomez/obuildfactory/wiki
instructions for the official “new build” (all platforms)

instructions for the official “old build” (all platforms, being retired but still useful to know about)

Presentations:

A web search reveals many slide decks presenting the features of Project Lambda. Because the project is work in progress, most of these contain details which would now be misleading. For this reason, only very recent presentations are listed here,
and only if they are accompanied by sound or video.
+ JavaOne 2012

o The Road to Lambda (Brian Goetz) provides a deep and comprehensive view of Project Lambda.
o Jump Starting Lambda Programming (Stuart Marks) is a contrast—a gentle and painstaking introduction.
o Lambda: A Peek Under the Hood (Brian Goetz) gives a wealth of technical detail about the implementation.

« Others

o JavaZone 2012: Lambdas in Java 8 (Angelika Langer)
o Strange Loop 2012: Project Lambda in Java SE 8 (Daniel Smith) {link downloads PDF slides with notes, video available Dec. 24th)

A different kind of presentation is an interview with Brian Goetz—the Java Language Architect at the helm of Project Lambda—in the Java Magazine for September/October 2012 (either register (free) as a subscriber to download the magazine

as PDF, or get it via the Newsstand app on iPhone or iPad).
r gdownloads.

For a long time, the principal open mailing list for discussing the Java 8 lambda-associated features was lambda-dev. The expert group lists were closed. In September 2012 a long-desired goal was achieved with the introduction of new open lists
for the expert group discussions. The function of the new and changed mailing lists was explained in this post. In brief, they are these:

Tool support
e JetBrains have released EAP (early access program) versions of Intellij IDEA, already providing quite good support for IamdesWWa aem(‘Ia a@
o The NetBeans 8 nightly builds provide experimental lambda support. L
L)

Mailing lists

The list lambda-dev is for discussion of implementation issues, including bug reports, code review comments, test cases, build or porting problems, migration experiences, and so on. It should no longer be used for language or feature design
discussions, though the archives are a useful source for past discussions of this kind. Comments and discussion about the specs now belong on the new lists, described next. (It should be said, though, that in fact language and feature discussion on
lambda-dev was continuing at least up until early Nov 2012.)

