
Dynamic data race detection in 

concurrent Java programs

Vitaly Trifanov 

trifanov@devexperts.com

Dmitry Tsitelov
cit@devexpert.com

mailto:trifanov@devexperts.com
mailto:cit@devexpert.com


Life story

The app is developed …

tested …

load tested …

delivered 



Life story

Everything works fine for a couple of weeks … 

and then …

strange exception, impossible data, 

lightning from the skies 

(add your favorite)



Life story

For two weeks everyone seeks for a problem …

customer in a rage …

then some hero finally finds the offender … 

the missing volatile on a field



Data Race Example



Data Race Example

public class Account {

private int amount = 0;

public void deposit(int x) {amount += x;}

public int getAmount() {return amount;}

}

public class TestRace {

public static void main (String[] args) {

final Account a = new Account();

Thread t1 = depositAccountInNewThread(a, 5);

Thread t2 = depositAccountInNewThread(a, 6);

t1.join();

t2.join();

System.out.println(account.getAmount()); //may print 5, 6, 11.

}

}



Expected Execution



Racy Execution



Data Races

— Data race occurs when many threads access the same shared data concurrently; at least 

one writes

— Usually it’s a bug



Data Races Are Dangerous

— Hard to detect if occurred

— no immediate effects

— program continues to work

— damage global data structures 

— Hard to find manually

— Not reproducible - depends on threads timing

— Dev & QA platforms are not so multicore



Automatic Race Detection

— 20+ years of research

— Static

— analyze program code offline

— data races prevention (extend type system, annotations)

— Dynamic: analyze real program executions

— On-the-fly

— Post-mortem



Dynamic Detectors vs Static



Static Approach

— Pros

— Doesn’t require program execution

— Analyzes all code

— Doesn’t depend on program input, environment, etc.

— Cons

— Unsolvable in common case

— Has to reduce depth of analysis

— A lot of existing tools for Java

— FindBugs, jChord, etc



Dynamic Approach

— Pros

— Complete information about program flow

— Lower level of false alarms

— Cons

— Analyzes only current execution

— Very large overhead

— No existing stable dynamic detectors for Java



Static vs Dynamic: What To Do?

— Use both approaches 

— Static (FindBugs/Sonar, jChord, …)

— Eliminate provable synchronization inconsistencies 

on the early stage

— Dynamic

— Try existing tools, but they are unstable

• IBM MSDK, Thread Sanitizer for Java

— That’s why we’ve developed our own!



Requirements for Perfect Detector

— Dynamic

— Fast

— Precise

— Scalable



Scalability Concept

— Application uses libraries and frameworks via API

— At least JRE

— API is well documented

— “Class XXX is thread-safe”

— “Class YYY is not thread-safe”

— “XXX.get() is synchronized with preceding call of XXX.set()”

— Describe behavior of API and exclude library from analysis



Synchronization Contract Example



DRD: How It’s Organized



What Operations to Intercept?

— Synchronization operations

— thread start/join/interrupt

— synchronized

— volatile read/write

— java.util.concurrent

— Accesses to shared data

— fields

— objects



How It Works

Instrumented app 
classesApplication classes



JLS: Publishing Data

Publish changes

Receive changes



JLS: Synchronized-With Relation

— “Synchronized-with” relation

— unlock monitor M ↦ all subsequent locks on M

— volatile write ↦ all subsequent volatile reads

— …

— Notation: send ↦ receive



JLS: Happens-Before & Data Races

— X happens-before Y, when

— X, Y - in same thread, X before Y in program order

— X is synchronized-with Y

— Transitivity: exists Z: hb(X, Z) && hb(Z, Y)

— Data race: 2 conflicting accesses, not ordered by happens-before relation



Happens-Before Example



Vector Clock



Vector Clock



Vector Clock



Vector Clock



Vector Clock



Vector Clock



Vector Clock



Vector Clock



Vector Clock

Not ordered!

A: 3 > 2

B: 3 < 4



How It Works. No Data Race Example



How It Works. Data Race Example



Code Instrumentation

— Check everything => huge overhead

— Race detection scope

— Accesses to our fields

— Foreign calls (treat them as read or write)

— Sync scope

— Detect sync events in our code

— Describe contracts of excluded classes

— Treat these contracts as synchronization events



Detection Scope

Our Code “foreign” call

“local” call



Race Detection

private class Storage {

private Map<Integer, Item> items = new HashMap<Integer, Item> ();

public void store(Item item) {

items.put(item.getId(), item);

}

public void saveToDisk() {

for (Item item : items.values()) {

//serialize and save

saveItem(item);

//...

}

}

public Item getItem(int id) {

return items.get(id);

}

public void reload() {

items = deserealizeFromFile();

}

}

On each access of “items” field we check 

race on this field

On each call of “items” method we check 

race on this object

Each field of class Item is protected the 

same way as field “items” of class 

Storage



Clocks Storing

— Thread clock

— ThreadLocal<VectorClock>

— Field XXX

— volatile transient VectorClock XXX_vc;

— Foreign objects, monitors 

— WeakIdentityConcurrentHashMap<Object,VectorClock>

— Volatiles, synchronization contracts

— ConcurrentHashMap <???, VectorClock> 



Composite Keys

— AtomicLongFieldUpdater.CAS(Object o, long offset, long v)

— param 0 + param 1

— Volatile field “abc” of object o

— object + field name

— AtomicInteger.set() & AtomicInteger.get()

— object

— ConcurrentMap.put(key, value) & ConcurrentMap.get(key)

— object + param 0



Solved Problems

— Composite keys for contracts and volatiles

— Generate them on-the-fly

— Avoid unnecessary keys creation

— ThreadLocal<MutableKeyXXX> for each CompositeKeyXXX

— Loading of classes, generated on-the-fly

— Instrument ClassLoader.loadClass()



Solved Problems

— Doesn’t break serialization

— compute serialVersiodUid before instrumentation

— Caching components of dead clocks

— when thread dies, its time frames doesn’t grow anymore

— cache frames of dead threads to avoid memory leaks

— local last-known generation & global generation



DRD in Real Life: QD

QD + DRD

QD

✔ 6 races found



DRD in Real Life: MARS UI

MARS + DRD

MARS

✔ 5 races found



DRD Race Report Example

WRITE_READ data race between current thread Thread-12(id=33) and thread 

Thread-11(id=32)

Race target : field my/app/DataServiceImpl.stopped

Thread 32 accessed it in my/app/DataServiceImpl.access$400(line : 29)

----- Stack trace for racing thread (id = 32) is not available.

----- Current thread's stack trace (id = 33) :

at my.app.DataServiceImpl.stop(DataServiceImpl.java:155)

at my.app.DataManager.close(DataManager.java:201)

...



DRD Advantages

— Doesn’t break serialization

— No memory leaks

— Few garbage

— No JVM modification

— Synchronization contracts

— very important: Unsafe, AbstractQueuedSynchronizer



Limitations: synchronization contracts

— We support only simple explicit links and their combinations

— owner – owner

— param – param 

— owner – param (partially)

— We do not check return values of contract methods

— only true/false for CAS-like operations

— We do not support implicit contracts

— Future<T> ExecutorService.submit(Callable<T> callable)

— ConcurrentMap.entrySet().iterator()….



Future works

— Research

— Synchronization contracts

— Verify declared intentions (“X is protected by lock L”)

— Module testing

— Development

— Post-mortem mode

— Integrate with tools for multithreaded unit-tests

— Annotations

— Optimizations

— Evaluation



Links

— http://code.devexperts.com/display/DRD/ : documentation, links, etc

— Contact us: drd-support@devexperts.com

— IBM MSDK

— ThreadSanitizer for Java

— jChord

— FindBugs

— JLS «Threads and locks» chapter

http://code.devexperts.com/display/DRD/
mailto:drd-support@devexperts.com
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=9a29d9f0-11b1-4d29-9359-a6fd9678a2e8
http://code.google.com/p/java-thread-sanitizer/
http://code.google.com/p/jchord/
http://findbugs.sourceforge.net/
http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html


Try it!

— It’s free as in beer

— Any troubles, bugs, questions? 

— feel free to contact us at drd-support@devexperts.com

— Success story? Epic fail?

— Let us know. Any feedback will be appreciated and will help us to make DRD better 

for the common good. 

mailto:drd-support@devexperts.com


Q & A



Thank you!


