
What’s New in Java 8
Maurice Naftalin

Developer, designer, architect, teacher, learner, writer

Maurice Naftalin

Co-author
Current Projects

www.lambdafaq.org

What’s New in Java 8

- The Big Picture

- Date and Time API

- Type Annotations

- ... , ... ,

Always Later Than You Think

The P6 Architecture:
Background Information

for Developers

©1995, Intel Corporation

Was Java Really Asleep?
The library and VM developers certainly weren’t asleep! Java 5 introduced

- JSR 133 — fixing the Java Memory Model

- java.util.concurrent (new locks, blocking queues, atomic variables, non-
blocking algorithms)

So what’s the problem?

- Without adequate synchronization, the Java Memory Model allows

- race conditions

- data visibility problems

- early writes, word tearing, ...

But why would anyone get synchronization wrong? :)

Programming Used to be Really Hard

Varian 620/i

Writing machine code on the bare metal, there’s a lot to remember

The Progress of Programming

There’s been a lot of progress:
- Assemblers let us forget opcodes
- Linkers let us forget absolute data location
- Compilers let us forget register allocation and stack management
- Virtual memory let us forget about paging
- Garbage collectors let us forget memory management

Progress is being allowed to forget things!

How can we forget about parallelism?

Why Can’t We Forget About
Parallelism?

int sum = 0;
for (int i = 0 ; i < a.length ; i++) {

sum += a[i];
}

Because we keep writing code like this:

Mutable State Makes Parallelism
Hard

+=+=+=+=+=

sum

a

+=+=+=+=+=...

Recursive Decomposition is
“Easier”

∑
∑∑ +

∑ ∑+

Let the Library Writers do it!

Collections developers know the recursive structure of their data

But right now they can’t use that knowledge:

int sum = 0;
for (Iterator<Integer> itr = myList.iterator() ; itr.hasNext() ;) {

sum += itr.next();
}

The problem is external iteration.

Internal Iteration
Basic idea:

Let the collection choose its iteration strategy (parallel, serial, out-of-
order, etc)

Instead of for we write forEach (examples)

Key is abstraction over behaviours

Provide the basic operation, collection uses it to implement recursive
decomposition

We just need to say “add two elements together” (<show, without
receiver>)

Associative!

Summing an Integer List

+

{ {
{+ +

{
+

Who are these guys?
And why aren’t they Russian?

History

java.util.Date, java.util.Calendar

- strong candidates for the all-time worst platform library design

Joda Time

- quality date and time library

JSR-310

- builds on experience of Joda Time

Goals

- Comprehensive model for date and time

- Supporting commonly used global calendars

- Immutable, so as to work well with lambdas/functional

- Type-safe

Design Principles

Immutable

- thread-safe, allows caching

Fluent

- easy to read, like a DSL

-

Extensible

LocalDate.of(2010, Month.DECEMBER, 3). withYear(2011).with(Month.May);

Two ways of 'counting' time

- Continuous, designed for machines

• Single incrementing number

• java.time.Instant — nanos from 1970-01-01T00:00:00Z

Instant start = Instant.ofEpochMilli(123450L);
Instant end = Instant.now();
assert start.isBefore(end);
assert end.isAfter(start);

Two ways of 'counting' time

- Field-based, designed for humans

• Year, month, day, hour, minute, second

• LocalDate, LocalDateTime, ZonedDateTime, Period, Duration, ...

Duration duration = Duration.ofSeconds(12);
Duration bigger = duration.multipliedBy(4);
Duration biggest = bigger.plus(duration);

Instant later = start.plus(duration);
Instant earlier = start.minus(duration);

