What's New in Java 8

Maurice Naftalin

Incepp

é"? Jpoint

Maurice Naftalin

Developer, designer, architect, teacher, learner, writer

HOME = ABOUT THE LAMBDA FAQ ' ASK THE FAQ | LAMBDA RESOURCES

Maurice Naftalin's Lambda FAQ

Your questions answered: all about Lambdas and friends

Speed Up the Java Development Process

JEAZ
Generics

and Collections

| ' About the Lambda FAQ

Recent Posts

How are conflicting method and virtual extension methods is planned to be feature-complete by t
declarations resolved?

The biggest changes in the language since Java 5—at least—are not far aw
Do default methods introduce

O'REILLY" Maurice Naaln multiple inher’ . ' . " 50 that Phil Wadler anc
—— i What are defa I b d f lections, will need a lot
e WWW.IAMDAATAG.0T iy s mgsine

Co-author

Current Projects

What's New in Java 8

- The Big Picture
= Date and Time API

- Type Annotations

- LN ’ LN] ’

Always Later Than You Think

P6 Dynamic Execution Architecture
Extends the Intel Architecture Beyond Superscalar

eNon-blocking architecture

—Pravante nracacanr etalle dirrinn carhe mamarv /O arragses

*“ The P6 Architecture: ...
Sp Background Information fiction

] for Developers
R

€
- ©1995, Intel Corporation tsi

Was Java Really Asleep?

The library and VM developers certainly weren’t asleep! Java 5 introduced
- JSR 133 — fixing the Java Memory Model

- java.util.concurrent (new locks, blocking queues, atomic variables, non-
blocking algorithms)

So what’s the problem?
- Without adequate synchronization, the Java Memory Model allows
- race conditions
- data visibility problems
- early writes, word tearing, ...

But why would anyone get synchronization wrong? :)

Programming Used to be Really Hard

Varian 620/i

Fast operation:

Large instruction
repertoire:

Word length:

Modular memory:

1.8-microsecond memory cycle.

107 standard, 18 optional; with
approximately 200 additional
instruction configurations which
can be microcoded.

16~ or 18-bit configurations.

4096 word minimum, 32,768 words
maximum.

Writing machine code on the bare metal, there’s a lot to remember

The Progress of Programming

There’s been a lot of progress:
- Assemblers let us forget opcodes
- Linkers let us forget absolute data location
- Compilers let us forget register allocation and stack management
- Virtual memory let us forget about paging
- Garbage collectors let us forget memory management

Progress is being allowed to forget things!

How can we forget about parallelism?

Why Can’t We Forget About
Parallelism?

Because we keep writing code like this:

int sum = 0;
for (inti=0; i <a.length ;i++) {
sum += ai];

}

Mutable State Makes Parallelism
Hard

sum

Recursive Decomposition is
“Easier”

Let the Library Writers do it!

Collections developers know the recursive structure of their data

But right now they can’t use that knowledge:

int sum = 0;
for (Iterator<Integer> itr = myList.iterator() ; itr.hasNext() ;) {
sum += itr.next();

}

The problem is external iteration.

Internal lteration

Basic idea:

Let the collection choose its iteration strategy (parallel, serial, out-of-
order, etc)

Instead of for we write forEach (examples)

Key is abstraction over behaviours

Summing an Integer List

Provide the basic operation, collection uses it to implement recursive
decomposition

—— e d e
+ + +
)

+

We just need to say “add two elements together” (<show, without
receiver>)

Associative!

.hey.r ussian

i / . Y 5 P 3
L AR u"nx’:‘ ' Y0 j-n ¢t M‘f‘ E

History

java.util.Date, java.util. Calendar

- strong candidates for the all-time worst platform library design
JodaTime

- quality date and time library
JSR-310

- builds on experience of Joda Time

Goals

Comprehensive model for date and time
Supporting commonly used global calendars
Immutable, so as to work well with lambdas/functional

Type-safe

Design Principles

Immutable
- thread-safe, allows caching
Fluent

- easy to read, like a DSL

LocalDate.of(2010, Month.DECEMBER, 3). withYear(201 I).with(Month.May);

Extensible

Two ways of 'counting’ time

- Continuous, designed for machines

® Single incrementing number

® java.time.lnstant — nanos from 1970-01-01T00:00:00Z

Instant start = Instant.ofEpochMilli(123450L);
Instant end = Instant.now();

assert start.isBefore(end);

assert end.isAfter(start);

Two ways of 'counting’ time

- Field-based, designed for humans

® Year, month, day, hour, minute, second

® | ocalDate, LocalDateTime, ZonedDateTime, Period, Duration, ...

Duration duration = Duration.ofSeconds(|2);
Duration bigger = duration.multipliedBy(4);
Duration biggest = bigger.plus(duration);

Instant later = start.plus(duration);
Instant earlier = start.minus(duration);

