Алгоритм логического анализа

Полиномиальный алгоритм, разрешающий $C \sqsubseteq_T D$

Алгоритм логического анализа

Полиномиальный алгоритм, разрешающий $C \sqsubseteq_T D$

Алгоритм решает для данных имен концептов A и B верно ли $A \sqsubseteq_T B$.

Алгоритм логического анализа

Полиномиальный алгоритм, разрешающий $C \sqsubseteq_T D$

Алгоритм решает для данных имен концептов A и B верно ли $A \sqsubseteq_T B$. Этого достаточно

- $C \sqsubseteq_T D$
- ullet $A \sqsubseteq_{T'} B$, где A и B не входят в C, D, T и ТВох

$$T' = T \cup \{A \equiv C, B \equiv D\}$$

Нормальная форма

 ${\cal EL}$ -ТВох находится в *нормальной форме* если он состоит только из импликаций вида

(sform)
$$A \sqsubseteq B$$
;

(cform)
$$A_1 \sqcap A_2 \sqsubset B$$
; имена концептов;

(rform)
$$A \sqsubseteq \exists r.B$$
;

(Iform)
$$\exists r.A \sqsubseteq B$$
.

где
$$A$$
 A_1 , A_2 , и B — имена концептов

Нормальная форма

 ${\cal EL}$ -ТВох находится в *нормальной форме* если он состоит только из импликаций вида

(sform)
$$A \sqsubseteq B$$
;

(cform) $A_1 \sqcap A_2 \sqsubseteq B$; имена концептов;

(rform)
$$A \sqsubseteq \exists r.B$$
;

(Iform)
$$\exists r.A \sqsubseteq B$$
.

где
$$A\ A_1,\ A_2$$
, и B — имена концептов

Произвольный \mathcal{EL} -Вох T может быть приведен к нормальной форме за полиномиальное время так, что для всех имен концептов A,B из T:

$$A \sqsubseteq_T B \Leftrightarrow A \sqsubseteq_{T'} B$$
.

Лемма

Определение. C[D/E] есть результат замены всех вхождений концепта D в C на E

$$\begin{aligned} \text{hasPart.}(\text{Arm} &\sqcap \text{Leg})[\text{Arm} &\sqcap \text{Leg}/\text{Tail} &\sqcap \text{H_Leg}] = \text{hasPart.}(\text{Tail} &\sqcap \text{H_Leg}), \\ &\quad \text{hasPart.}(\text{Arm} &\sqcap \text{Leg})[\text{Arm}/\text{Tail}] = \text{hasPart.}(\text{Tail} &\sqcap \text{Leg}) \end{aligned}$$

Лемма. $lpha = C \sqsubseteq D \in T$, $T - { t TBox.}$ Для

- $T' = T \setminus \alpha \cup \{C[E/X] \sqsubseteq D, E \sqsubseteq X\}$ и
- $T' = T \setminus \alpha \cup \{C \sqsubseteq D[E/X], X \sqsubseteq E\}$,

где X — новое имя концепта, и всех имен концептовA,B из T:

$$A \sqsubseteq_T B \Leftrightarrow A \sqsubseteq_{T'} B$$
.

Приведение к нормальной форме

Применять следующие правила пока возможно

- заменить $C_1 \equiv C_2$ на $C_1 \sqsubseteq C_2$ и $C_2 \sqsubseteq C_1$;
- ullet заменить $C \sqsubseteq C_1 \sqcap C_2$ на $C \sqsubseteq C_1$ и $C \sqsubseteq C_2$;
- ullet если $\exists r.C$ входит в T и C сложный концепт, заменить все вхождения C на новое имя X_C и добавить $X_C \sqsubseteq C$ и $C \sqsubseteq X_C$ к ТВох.
- ullet Если $A_1\sqcap\cdots\sqcap A_n\sqcap\exists r_1.B_1\sqcap\cdots\sqcap\exists r_m.B_m\sqsubseteq C$ входит в T , заменить на

$$A_1\sqcap\cdots\sqcap A_n\sqcap X\sqsubseteq C$$
 и $\exists r_1.B_1\sqcap\cdots\sqcap\exists r_m.B_m\sqsubseteq X$

гда X — новое имя концепта.

ullet если $\exists r_1.B_1 \sqcap \dots \sqcap \exists r_m.B_m \sqsubseteq \exists r.B$ входит в T , заменить на

$$\exists r_1.B_1 \sqcap \cdots \sqcap \exists r_m.B_m \sqsubseteq X$$
 и $X \sqsubseteq \exists r.B$

где X — новое имя концепта.

Пример

T:

$$A_0 \sqsubseteq B \cap \exists r.B'$$

$$A_1 \sqcap \exists r.B \subseteq A_2$$

Шаг 1

$$A_0 \sqsubseteq B$$

$$A_0 \sqsubseteq \exists r.B'$$

$$A_1 \sqcap \exists r.B \sqsubseteq A_2$$

Шаг 2

$$A_0 \sqsubseteq B$$

$$A_0 \sqsubseteq \exists r.B'$$

$$A_1 \sqcap X \sqsubseteq A_2$$

$$\exists r.B \sqsubseteq X$$

МЕD в нормальной форме

Pericardium

Tissue Pericardium \Box YPericarditis

Inflammation Pericarditis

∃has loc.Pericardium Inflammation

Disease Inflammation \Box \exists acts_on.Tissue Disease $\sqcap X \quad \Box \quad$ Heartdisease Disease $\sqcap X \quad \square$ NeedsTreatment \exists has_loc. $Y \square X \exists$ cont_in.Heart $\square Y Y \square \exists$ cont_in.Heart

Идея алгоритма разрешающего $A \sqsubseteq_T B$

По данному T в нормальной форме, строим функции

- S отображает каждое имя концепта A, входящее в T, в множество имен концептов;
- ullet R отображает каждое имя роли r, входящее в T, в множество пар (B_1,B_2) имен концептов.

 $A \sqsubseteq_T B$ т. и т.т., когда $B \in S(A)$. Интуитивно, строится интерпретация ${\mathcal I}$ с

- $\Delta^{\mathcal{I}}$ множество имен концептов в T.
- ullet $A^{\mathcal{I}}$ множество всех B таких что $A\in S(B)$;
- ullet $r^{\mathcal{I}}$ множество всех $(A,B)\in R(r).$

 ${\mathcal I}$ является моделью T и $A \sqsubseteq_T B$ т. и т.т., когда $A \in B^{{\mathcal I}}.$

Алгоритм

Input: T в нормальной форме.

Инициализировать: $S(A) = \{A, \top\}$ и $R(r) = \emptyset$ для всех A и r в T .

Применять следующие правила пока это возможно:

(simpleR) If $A' \in S(A)$ and $A' \sqsubseteq B \in T$ and $B \not \in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(conjR) If $A_1,A_2\in S(A)$ and $A_1\sqcap A_2\sqsubseteq B\in T$ and $B
ot\in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in T$ and $(A,B) \not \in R(r)$, then

$$R(r) := R(r) \cup \{(A,B)\}.$$

(leftR) If $(A,B)\in R(r)$ and $B'\in S(B)$ and $\exists r.B'\sqsubseteq A'\in T$ and $A'\not\in S(A)$, then

$$S(A) := S(A) \cup \{A'\}.$$

Пример

$$\begin{array}{cccc} (1) & A_0 & \sqsubseteq & \exists r.B \\ (2) & B & \sqsubseteq & E \\ (3) & \exists r.E & \sqsubseteq & A_1 \end{array}$$

$$(2) \qquad B \; \sqsubseteq \; E$$

$$(3) \exists r.E \sqsubseteq A_1$$

Initialise: $S(A_0) = \{A_0\}, S(A_1) = \{A_1\}, S(B) = \{B\}, S(E) = \{E\}, R(r) = \emptyset.$

- (rightR) и (1): $R(r) = \{(A_0, B)\};$
- (simpleR) u (2): $S(B) = \{B, E\}$;
- (leftR) и (3): $S(A_0) = \{A_0, A_1\};$
- Дальше правила не применяются

Т.о.,
$$R(r)=\{(A_0,B)\}$$
, $S(B)=\{B,E\}$, $S(A_0)=\{A_0,A_1\}$.
Следовательно, $A_0\sqsubseteq_T A_1$.

Фрагмент MED

Неполная трасса алгоритма (показывающая, что $Ps \sqsubseteq_{MED} NeedsTreatment)$:

- (simpleR): $S(Pm) = \{Y, Pm\}$, $S(Ps) = \{Inf, Ps, Dis\}$;
- (rightR): $R(\mathsf{has_loc}) = \{(\mathsf{Ps},\mathsf{Pm})\}$,
- (leftR): $S(\mathsf{Ps}) = \{\mathsf{Inf}, \mathsf{Ps}, \mathsf{Dis}, X\}$
- (conjR): $S(Ps) = \{Inf, Ps, Dis, X, NeedsTreatment\}$

Время работы

На каждом шаге алгоритм добавляет хотя бы одно имя концепта в какой-то S(C) или пару имен концептов в какой-то R(r).

⇒ Останавливается за полиномиальное время.

Корректность алгоритма

T в нормальной форме, S, R — выход алгоритма.

Теорема. Для всех имен концептов A,B в T: если $B\in S(A)$, то $A\sqsubseteq_T B$.

 S_0, S_1, \ldots и R_0, R_1, \ldots отображения, построенные на i-той итерации алгоритма.

Для всех i, произвольной интерпретации $\mathcal{I}:\mathcal{I}\models T$ и любого $x\in A^{\mathcal{I}}$

- ullet Если $B\in S_i(A)$, то $x\in B^{\mathcal{I}}$
- ullet Если $(A,B)\in R_i(r)$, то существует $y\in \Delta^{\mathcal{I}}$ т.ч. $(x,y)\in r^{\mathcal{I}}$ и $y\in B^{\mathcal{I}}$

Доказательство корректности (на доске)

- ullet Если $B\in S_i(A)$, то $x\in B^{\mathcal{I}}$
- ullet Если $(A,B)\in R_i(r)$, то существует $y\in \Delta^{\mathcal{I}}$ т.ч. $(x,y)\in r^{\mathcal{I}}$ и $y\in B^{\mathcal{I}}$

(simpleR) If $A' \in S(A)$ and $A' \sqsubseteq B \in T$ and $B \not \in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(conjR) If $A_1,A_2\in S(A)$ and $A_1\sqcap A_2\sqsubseteq B\in T$ and $B\not\in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in T$ and $(A,B) \not \in R(r)$, then

$$R(r) := R(r) \cup \{(A,B)\}.$$

(leftR) If $(A,B)\in R(r)$ and $B'\in S(B)$ and $\exists r.B'\sqsubseteq A'\in T$ and $A'\not\in S(A)$, then

$$S(A) := S(A) \cup \{A'\}.$$

Полнота алгоритма

T в нормальной форме, S, R — выход алгоритма.

Теорема. Для всех имен концептов A,B в T: если $A\sqsubseteq_T B$, то $B\in S(A)$.

Допустим это не так, B
otin S(A). Определим интерпретацию ${\mathcal I}$

•
$$\Delta^{\mathcal{I}} = \{A \mid A \in CN(T)\}$$

•
$$A^{\mathcal{I}} = \{B \mid A \in S(B)\};$$

•
$$r^{\mathcal{I}} = \{(A,B) \in R(r)\}.$$

Тогда

- $\mathcal{I} \not\models A \sqsubseteq B$
- ullet выполняет T

(Для любого имени концепта A из T и \mathcal{EL} -концепта $C\colon A\sqsubseteq_T C \iff A\in C^\mathcal{I}$.)

• Простейшая дескрипционная логика

- Полиномиальный алгоритм логического анализа
- Хорошо подходит для описания больших и очень больших терминологий
 - SNOMED CT
 - GO
 - NCI (почти)

• Простейшая дескрипционная логика

- Полиномиальный алгоритм логического анализа
- Хорошо подходит для описания больших и очень больших терминологий
 - SNOMED CT
 - GO
 - NCI (почти)
- Только "позитивная", детерминированная информация

• Простейшая дескрипционная логика

- Полиномиальный алгоритм логического анализа
- Хорошо подходит для описания больших и очень больших терминологий
 - SNOMED CT
 - GO
 - NCI (почти)
- Только "позитивная", детерминированная информация
 - Слоны бывают серыми. А розовые?

• Простейшая дескрипционная логика

- Полиномиальный алгоритм логического анализа
- Хорошо подходит для описания больших и очень больших терминологий
 - SNOMED CT
 - GO
 - NCI (почти)
- Только "позитивная", детерминированная информация
 - Слоны бывают серыми. А розовые?
 - Слоны только серые

• Простейшая дескрипционная логика

- Полиномиальный алгоритм логического анализа
- Хорошо подходит для описания больших и очень больших терминологий
 - SNOMED CT
 - GO
 - NCI (почти)
- Только "позитивная", детерминированная информация
 - Слоны бывают серыми. А розовые?
 - Слоны только серые
 - Самцы не могут быть самками

• Простейшая дескрипционная логика

- Полиномиальный алгоритм логического анализа
- Хорошо подходит для описания больших и очень больших терминологий
 - SNOMED CT
 - GO
 - NCI (почти)
- Только "позитивная", детерминированная информация
 - Слоны бывают серыми. А розовые?
 - Слоны только серые
 - Самцы не могут быть самками
 - Слоны делятся на индийских и африканских

Дескрипционная логика \mathcal{ALC} : терминологическая часть

База знаний (КВ)

ТВох (терминология, схема)

 $Man \equiv Human \sqcap Male$ $HappyFather \equiv Man \sqcap \exists hasChild$

ABox (assertion box, данные)

john: Man (john, mary): hasChild

• • • •

Система анализа

Интерфейс