Синтаксическая локальность

$$\mathcal{C}^\perp_\Sigma::=A^\perp\mid (\lnot C^\top)\mid (C\sqcap C^\perp)\mid (\exists R^\perp.C)\mid (\exists R.C^\perp)\mid (\geq nR^\perp.C)\mid (\geq nR.C^\perp);$$
 $\mathcal{C}^\top_\Sigma::=(\lnot C^\perp)\mid (C_1^\top\sqcap C_2^\perp),$ где $A^\perp,R^\perp\notin\Sigma.$

Аксиома синтаксические локальна относительно Σ если она имеет вид

- $\bullet \ R^{\perp} \sqsubseteq R$
- Trans (R^\perp)
- $C^{\perp} \sqsubseteq C$
- $C \sqsubseteq C^{\top}$

Синтаксическая локальность

$$\mathcal{C}^\perp_\Sigma::=A^\perp\mid (\lnot C^\top)\mid (C\sqcap C^\perp)\mid (\exists R^\perp.C)\mid (\exists R.C^\perp)\mid (\geq nR^\perp.C)\mid (\geq nR.C^\perp);$$
 $\mathcal{C}^\top_\Sigma::=(\lnot C^\perp)\mid (C_1^\top\sqcap C_2^\perp),$ где $A^\perp,R^\perp\notin\Sigma.$

Аксиома синтаксические локальна относительно Σ если она имеет вид

- $\bullet \ R^{\perp} \sqsubseteq R$
- Trans (R^\perp)
- $C^{\perp} \sqsubseteq C$
- $C \sqsubseteq C^{\top}$

Теорема. Если теория синтаксически локальна, она семантически локальна.

Синтаксическая локальность

$$\mathcal{C}^\perp_\Sigma::=A^\perp\mid (\lnot C^\top)\mid (C\sqcap C^\perp)\mid (\exists R^\perp.C)\mid (\exists R.C^\perp)\mid (\geq nR^\perp.C)\mid (\geq nR.C^\perp);$$
 $\mathcal{C}^\top_\Sigma::=(\lnot C^\perp)\mid (C_1^\top\sqcap C_2^\perp),$ где $A^\perp,R^\perp
otin\Sigma$.

Аксиома синтаксические локальна относительно Σ если она имеет вид

- $\bullet \ R^\perp \sqsubseteq R$
- Trans (R^{\perp})
- $C^{\perp} \sqsubseteq C$
- $C \sqsubseteq C^{\top}$

Теорема. Если теория синтаксически локальна, она семантически локальна.

Обратное неверно

Алгоритм выделения модуля для Σ

```
\begin{split} \mathcal{M} &:= \emptyset, \, \mathcal{Q} := \mathcal{T}. \\ \text{while } Q \neq \emptyset \text{ do} \\ &\alpha = \text{select\_axiom}(\mathcal{Q}); \\ &\text{if locality\_test}(\alpha, \Sigma \cup \text{sig}(\mathcal{M})) \text{ then} \\ &\mathcal{Q} := \mathcal{Q} \setminus \{\alpha\} \\ &\text{else} \\ &\mathcal{M} := \mathcal{M} \cup \{\alpha\} \\ &\mathcal{Q} := \mathcal{T} \setminus \mathcal{M} \\ &\text{end if} \\ &\text{end while} \end{split}
```

$$\mathcal{T}$$
 — теория, Σ — сигнатура, $\mathcal{M}\subseteq\mathcal{T}$ — модуль.

• $\Sigma \subseteq \operatorname{sig}(\mathcal{M})$

 \mathcal{T} — теория, Σ — сигнатура, $\mathcal{M}\subseteq\mathcal{T}$ — модуль.

- $\Sigma\subseteq\operatorname{sig}(\mathcal{M})$
- $\mathcal{T} \setminus \mathcal{M}$ синтаксически локальна для Σ ;

 \mathcal{T} — теория, Σ — сигнатура, $\mathcal{M}\subseteq\mathcal{T}$ — модуль.

- $\Sigma\subseteq\operatorname{sig}(\mathcal{M})$
- $\mathcal{T} \setminus \mathcal{M}$ синтаксически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ семантически локальна для Σ ;

 \mathcal{T} — теория, Σ — сигнатура, $\mathcal{M}\subseteq\mathcal{T}$ — модуль.

- $\Sigma \subseteq \operatorname{sig}(\mathcal{M})$
- $\mathcal{T} \setminus \mathcal{M}$ синтаксически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ семантически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ является семантической тавтологией для Σ ;

$$\mathcal{T}$$
 — теория, Σ — сигнатура, $\mathcal{M}\subseteq\mathcal{T}$ — модуль.

- $\Sigma \subseteq \operatorname{sig}(\mathcal{M})$
- $\mathcal{T} \setminus \mathcal{M}$ синтаксически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ семантически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ является семантической тавтологией для Σ ;
- $\mathcal T$ является модельно консервативным расширением $\mathcal M$;

$$\mathcal{T}$$
 — теория, Σ — сигнатура, $\mathcal{M}\subseteq\mathcal{T}$ — модуль.

- $\Sigma\subseteq\operatorname{sig}(\mathcal{M})$
- $\mathcal{T} \setminus \mathcal{M}$ синтаксически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ семантически локальна для Σ ;
- $\mathcal{T} \setminus \mathcal{M}$ является семантической тавтологией для Σ ;
- \mathcal{T} является модельно консервативным расширением \mathcal{M} ;
- $\mathcal T$ является консервативным расширением $\mathcal M$ относительно $\mathsf{sig}(\mathcal M)$.

Ациклические \mathcal{EL} -терминологии

Для ациклических \mathcal{EL} -терминологий, возможно найти **минимальный** модуль $\mathcal{M}\subseteq\mathcal{T}$ т.ч.

- $\mathcal{T} \setminus \mathcal{M}$ является семантической тавтологией для Σ ;
- $\mathcal T$ является консервативным расширением $\mathcal M$ относительно $\mathsf{sig}(\mathcal M)$.

Если ${\mathcal T}$ не содержит тривиальных аксиом

$$A \sqsubseteq \top \quad A \equiv \top$$

эти понятия совпадают.

Ациклические \mathcal{EL} -терминологии

Для ациклических \mathcal{EL} -терминологий, возможно найти **минимальный** модуль $\mathcal{M}\subseteq\mathcal{T}$ т.ч.

- $\mathcal{T} \setminus \mathcal{M}$ является семантической тавтологией для Σ ;
- $\mathcal T$ является консервативным расширением $\mathcal M$ относительно $\mathsf{sig}(\mathcal M)$.

Если ${\mathcal T}$ не содержит тривиальных аксиом

$$A \sqsubseteq \top \quad A \equiv \top$$

эти понятия совпадают.

Если любую **одноэлементную** интерпретацию символов Σ можно расширить до интерпретации $\mathcal{T}\setminus\mathcal{M}$, то $\mathcal{T}\setminus\mathcal{M}$ является семантической тавтологией для Σ ;

Элементы данных и АВох

Реляционные базы данных

Мы рассматриваем реляционные базы данных (RDB) как наборы утверждений вида

где A это свойство (имя концепта), а R — бинарное отношение (имя роли), а a, b имена индивидов.

- A(a) утверждает, что a это пример A;
- R(a,b) утверждает, что (a,b) это пример R.

Пример

Например, рассмотрим следующие

- имена концептов University, BritishUnivty, Student,
- имена ролей registered_at, student_at.
- имена индивидов LU, MU, CMU, Tim, Tom, и Rob .

Рассмотрим теперь RDB ${ m ID}$

- University(LU), University(MU), University(CMU);
- BritishUnivty(LU), BritishUnivty(MU);
- Student(Tim), Student(Tom);
- registered_at(Tim, LU), registered_at(Tom, MU);
- student_at(Tim, LU), student_at(Rob, CMU).

Запросы к базам данных

Рассмотрим следующие запросы и ответы к ним

• Найти все университеты.

В синтаксисе логики первого порядка,

$$q(x) = University(x)$$
.

OTBET: LU, MU, CMU.

ullet Найти все пары (a,b) т.ч. a зарегистрирован в b.

$$q(x, y) = registered_at(x, y).$$

Ответ: (Tim, LU), (Tom, MU);

• Найти всех a, которые где-то зарегистрированы

$$q(x) = \exists y. registered_at(x, y).$$

Ответ: **Tim**, **Tom**.

University(LU)
University(MU)
University(CMU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tim, LU)
student_at(Rob, CMU).

Запросы к базам данных

• Найти все небританские университеты

$$q(x) = \text{University}(x) \land \neg \text{BritishUnivty}(x).$$

Ответ: СМU;

ullet Найти все пары (a,b) т.ч. a зарегистрирован в b но a не является студентом в b.

$$q(x,y) = \text{registered_at}(x,y) \land \neg \text{student_at}(x,y).$$

Ответ: **(Tom, MU)**;

• В каждом ли университете есть студенты?

$$q = \forall y. \ (\text{University}(y) \rightarrow \exists x. \ \text{student_at}(x,y)).$$

ответ: Нет

University(LU)
University(MU)
University(CMU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tim, LU)
student_at(Rob, CMU).

Запросы к базам данных

• Верно ли, что CMU является университетом, но не британским университетом?

$$q = extsf{University}(extsf{CMU}) \land \neg extsf{BritishUnivty}(extsf{CMU})$$

Ответ: Да

• Правда ли, что **LU** — университет?

$$q = \mathsf{University}(\mathsf{LU}).$$

Ответ: Да.

• Сколько небританских университетов?

Ответ: в точности один

University(LU)
University(MU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tim, LU)
student_at(Rob, CMU).

Формальное определение запроса к БД

RDB D задает интерпретацию \mathcal{I}_D :

- $\Delta^{\mathcal{I}}$ множество имен индивидов в D;
- ullet $d\in A^{\mathcal{I}}$ т. и т.т., когда $A(d)\in D$;
- ullet $(d_1,d_2)\in R^{\mathcal{I}}$ т. и т.т., когда $R(d_1,d_2)\in D.$

Для данных RDB
$$D$$
 и запроса $q=q(x_1,\ldots,x_n)$ answer (D,q) это множество (a_1,\ldots,a_n) т.ч. $\mathcal{I}_D\models q(a_1,\ldots,a_n)$.

Для запроса q без свободных переменных, мы говорим что

- ullet ответ, задаваемый D, "Да", если $\mathcal{I}_D \models q$;
- ullet ответ, задаваемый D, "Нет" если $\mathcal{I}_D \not\models q$ (или $\mathcal{I}_D \models \lnot q$).

Итого

- ullet Каждая RDB D описывает в точности одну модель;
- ullet Если $A(a)
 ot\in D$, то a НЕ является примером A в \mathcal{I}_D и ответ на запрос A(a) будет "Het".
- ullet Если $R(a,b)
 ot\in D$, то (a,b) НЕ является примером R в \mathcal{I}_D и ответом на запрос R(a,b) будет "Нет".
- Т.о., предполагается полное знание о примерах концептов и ролей.
- Значит, при вычислении ответов на запросы принимается **предположение о замкнутости мира**. Если что-то не описано в RDB, это неверно.

Сложность запросов к RDBs

Рассмотрим, для простоты, запросы без свободных переменных. Есть два способа измерить вычислительную сложность запросов к RDBs:

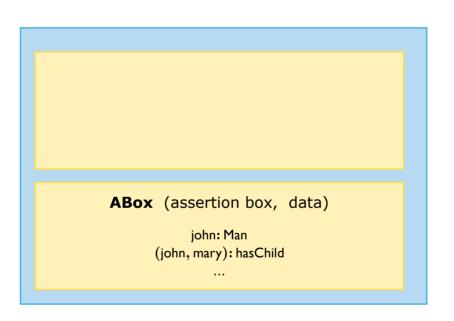
- Сложность относительно данных: зафиксировать запрос и оценивать время/память необходимые для вычисления ответа на запрос как функцию от размера данных.
- Комбинированная сложность: оценивать время/память необходимы для вычисления ответа на запрос как функцию от размера данных и размера запроса.

Сложность относительно данных считается более подходящей так как размер запросов обычно существенно меньше размера данных, представленных в БД.

SQL:

Сложность относительно данных LogSpace-полна, комбинированная сложность — PSpace-полна.

АВох: Данные и предположение об открытости мире



Inference System

Interface

ABox

ABox (assertion box) это конечное множество утверждений вида

$$a:A, \quad (a,b):R,$$

где A это имя концепта, R — имя роли, а a,b — имена индивидов.

- a:A утверждает, что a это пример A;
- ullet (a,b):R утверждает, что (a,b) это пример R.

- Отказ от предположения о закрытости мира
- АВох описывает то, что мы знаем, но мы можем чего-то не знать!

Открытый мир

- Каждый АВох описывает класс интерпретаций совместных с АВох;
- Несмотря на то, что $A(a) \not\in \mathcal{A}$, a все равно может быть примером A в какой-то интерпретации \mathcal{A} . Значит, ответом на запрос $\neg A(a)$ будет "не знаю".
- Аналогично, несмотря на то, что $R(a,b) \not\in \mathcal{A}$, (a,b) может быть примером R в какой-то интерпретации \mathcal{A} . Ответ на запрос $\neg R(a,b)$ "не знаю".
- Предполагается неполное знание о примерах концептов и ролей
- Гипотеза об открытости мира.

Пример

Используем ту же RDB **ID** что и до этого, но обозначаем ID_A , чтобы отличать от ID :

- LU: University, MU: University, CMU: University;
- LU : BritishUnivty, MU : BritishUnivty;
- Tim: Student, Tom: Student;
- (Tim, LU): registered_at, (Tom, MU): registered_at;
- (Tim, LU) : student_at, (Rob, CMU) : student_at.

Рассмотрим следующие запросы и $extit{TOYHIBE}$ ответы, данные при помощи ID_A

• Найти все университеты (более точно, все объекты, про которые сказано, что они являются университетами).

$$q(x) = University(x)$$
.

Ответ: \mathbf{LU} , \mathbf{MU} , \mathbf{CMU} (такой же как и с помощью \mathbf{ID}).

• Найти все пары (a,b) т. ч. a зарегистрирован в b (более точно, все пары (a,b) про которые сказано, что a зарегистрирован в b).

$$q(x, y) = registered_at(x, y).$$

Ответ: ($\mathsf{Tim}, \mathsf{LU}$), ($\mathsf{Tom}, \mathsf{MU}$) (также как ID);

University(LU)
University(MU)
University(CMU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tim, LU)
student_at(Rob, CMU).

ullet найти все a, которые где-то зарегистрированы (точнее, все a про которые сказано, что они где-то зарегистрированы)

$$q(x) = \exists y. registered_at(x, y).$$

Ответ: **Tim**, **Tom** (также как ID).

• Найти все университеты, которые не являются британскими университетами (более точно, найти все объекты, про которые сказано, что они не являются британскими университетами)

$$q(x) = University(x) \land \neg BritishUnivty(x).$$

Ответ: пустой список.

University(LU)
University(MU)
University(CMU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tim, LU)
student_at(Rob, CMU).

• Найти все пары (a,b) т.ч. a зарегистрирован в b и a не является студентом в b (более точно, найти все пары (a,b) про которые сказано, что a зарегистрирован в b и a не является студентом в b).

$$q(x,y) = \text{registered_at}(x,y) \land \neg \text{student_at}(x,y).$$

Ответ: пустой список.

• В каждом ли университете есть студент?

$$q = \forall y. \; (\text{University}(y) \rightarrow \exists x. \; \text{student_at}(x,y))$$

Ответ: не знаю.

University(LU)
University(MU)
University(CMU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tom, MU)
student_at(Rob, CMU).

• Верно ли, что CMU это университет, но не британский университет?

$$q = extsf{University}(extsf{CMU}) \wedge \neg extsf{BritishUnivty}(extsf{CMU}).$$

Ответ: не знаю.

• Верно ли, что **LU** это университет?

$$q = {\sf University}({\sf LU}).$$

Ответ: Да.

University(LU)
University(MU)
University(CMU)
BritishUnivty(LU)
BritishUnivty(MU)
Student(Tim)
Student(Tom)
registered_at(Tim, LU)
registered_at(Tim, LU)
student_at(Tim, LU)
student_at(Rob, CMU).

Формальное определение запросов к АВох

Интерпретация ${\mathcal I}$ является моделью для ABox ${\mathcal A}$ если:

- ullet все имена индивидов a из ${\mathcal A}$ интерпретируются как $a^{\mathcal I} \in \Delta^{\mathcal I}.$
- $a^{\mathcal{I}} \in A^{\mathcal{I}}$ когда $a:A \in \mathcal{A}$;
- $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$ когди $R(a,b)\in\mathcal{A}.$

Для данного ABox ${\mathcal A}$ и запроса $q=q(x_1,\ldots,x_n)$, точным ответом на q относительно ${\mathcal A}$,

CertAnswer(A, q),

являются все (a_1,\ldots,a_n) т.ч. $\mathcal{I}\models q(a_1,\ldots,a_n)$, для всех моделей \mathcal{I} ABox \mathcal{A} .

Для запроса q без свободных переменных

- ullet ответом по отношению к ${\mathcal A}$ будет "да" если ${\mathcal I} \models q$ для всех моделей ${\mathcal I}$ of ${\mathcal A}$;
- ullet ответом по отношению к ${\mathcal A}$ будет "нет" если ${\mathcal I} \not\models q$ для всех моделей ${\mathcal I}$ of ${\mathcal A}$.
- Иначе, ответом будет "не знаю".