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1. Can Modern Math be Understood?

“Most current mathematical research, since the 60s, is devoted to
fancy situations: it brings solutions which nobody understands to
questions nobody asked’ (quoted from Bernard Beauzamy, “Real
life Mathematic”, Irish Math. Soc. Bull. 48 (2002), 43-46).
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1. Can Modern Math be Understood?

“Most current mathematical research, since the 60s, is devoted to
fancy situations: it brings solutions which nobody understands to
questions nobody asked’ (quoted from Bernard Beauzamy, “Real
life Mathematic”, Irish Math. Soc. Bull. 48 (2002), 43-46).

This provocative claim is certainly exaggerated but it does reflect a
really serious problem: a communication barrier between
mathematics (and exact science in general) and human common
sense.

The barrier results in a paradox: while the achievements of modern
mathematics are widely used in many crucial aspects of everyday
life, people tend to believe that today mathematicians do “abstract
nonsense” of no use at all.
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In many cases there is an inherent difficulty: mathematics is
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2. Can Modern Math be Understood?

In many cases there is an inherent difficulty: mathematics is
difficult. Normally non-mathematicians do accept the fact that

a solution to a mathematical problem may be difficult to digest but
the point is that it is usually hard to explain to them why the
solution is worth the effort.
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In many cases there is an inherent difficulty: mathematics is
difficult. Normally non-mathematicians do accept the fact that

a solution to a mathematical problem may be difficult to digest but
the point is that it is usually hard to explain to them why the
solution is worth the effort.
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2. Can Modern Math be Understood?

In many cases there is an inherent difficulty: mathematics is
difficult. Normally non-mathematicians do accept the fact that

a solution to a mathematical problem may be difficult to digest but
the point is that it is usually hard to explain to them why the
solution is worth the effort.
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Will my cow give more milk
now?

ovember 13, 2010

Mikhail Volkov Synchronizing Finite Automata



3. Finite Automata

A finite automaton is a simple but extremely productive notion that
captures the idea of an object interacting with an environment.
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A finite automaton is a simple but extremely productive notion that
captures the idea of an object interacting with an environment.
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3. Finite Automata

A finite automaton is a simple but extremely productive notion that
captures the idea of an object interacting with an environment.

Environment Object
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4. Finite Automata

This notion originates in the seminal work by Alan Turing
(“On Computable Numbers, With an Application to the

Entscheidungsproblem”, Proc. London Math. Soc., Ser. 2, 42
(1936), 230-265).

“The behavior of the computer at any moment is determined by
the symbols which he is observing, and his of mind at that
moment’”.
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4. Finite Automata

This notion originates in the seminal work by Alan Turing
(“On Computable Numbers, With an Application to the
Entscheidungsproblem”, Proc. London Math. Soc., Ser. 2, 42
(1936), 230-265).

“The behavior of the computer at any moment is determined by
the symbols which he is observing, and his of mind at that
moment’”.

Another important source is the work by neurobiologists Warren
McCulloch and Walter Pitts (“A Logical Calculus of the Ideas
Immanent in Nervous Activity”, Bull. Math. Biophys. 5 (1943),
115-133).
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5. Visualization

Finite automata admit a convenient visual representation.
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Finite automata admit a convenient visual representation.

Here one sees 4 called 1,2,3,4, an action called a
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5. Visualization

Finite automata admit a convenient visual representation.

a
N
1 233
~_b ~
b b

(om0

Here one sees 4 called 1,2,3,4, an action called a
and another action called b.
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6. Definitions and Terminology

We consider complete deterministic finite automata:

o =(Q,L,0).
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We consider complete deterministic finite automata:
o =(Q,L,0).

Here

e Q is the state set;

e Y is the input alphabet;

e J:QxX — Q is the transition function.
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Here

e Q is the finite state set;

e ) is the input finite alphabet;

e J:QxX — Q is the transition function.
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e Q is the state set;

e Y is the input alphabet;

e {:QxX — Q is the transition function.
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6. Definitions and Terminology

We consider complete deterministic finite automata:
o =(Q,L,0).

Here

e @ is the state set;

e Y is the input alphabet;

e d: QXX — Q is the totally defined transition function.
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We consider complete deterministic finite automata:
o =(Q,L,0).

Here

e Q is the state set;

e Y is the input alphabet;

e J:QxX — Q is the transition function.

We need neither initial nor final states.
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6. Definitions and Terminology

We consider complete deterministic finite automata:
o =(Q,L,0).

Here

e Q is the state set;

e Y is the input alphabet;

e J:QxX — Q is the transition function.

We need neither initial nor final states.

¥ * stands for the set of all words over ¥ including the empty word.
The function § uniquely extends to a function @ x ¥* — @ still
denoted by 4.
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o =(Q,L,0).

Here

e @ is the state set;

e Y is the input alphabet;

e d: QXX — Q is the transition function.

We need neither initial nor final states.

¥ * stands for the set of all words over ¥ including the empty word.
The function § uniquely extends to a function @ x ¥* — @ still
denoted by 4.

To simplify notation we often write q.w for §(q, w)
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6. Definitions and Terminology

We consider complete deterministic finite automata:
o =(Q,L,0).

Here

e Q is the state set;

e Y is the input alphabet;

e J:QxX — Q is the transition function.

We need neither initial nor final states.

¥ * stands for the set of all words over ¥ including the empty word.
The function § uniquely extends to a function @ x ¥* — @ still
denoted by 4.

To simplify notation we often write q.w for §(q, w)

and P.w for {0(q,w) | g € P}.
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7. Definitions and terminology

An automaton & = (Q, ¥, ) is called synchronizing if there exists
a word w € ¥* whose action resets &7, that is, leaves the
automaton in one particular state no matter which state in Q it
started at: 6(q,w) = d(q’,w) for all q,¢' € Q.
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We can also write this as |Q. w| = 1.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata



7. Definitions and terminology

An automaton & = (Q, ¥, ) is called synchronizing if there exists
a word w € ¥* whose action resets &7, that is, leaves the
automaton in one particular state no matter which state in Q it
started at: 6(q,w) = d(q’,w) for all q,¢' € Q.

We can also write this as |Q. w| = 1.
Any word w with this property is a reset word for <.
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7. Definitions and terminology

An automaton & = (Q, ¥, ) is called synchronizing if there exists
a word w € ¥* whose action resets &7, that is, leaves the
automaton in one particular state no matter which state in Q it
started at: 6(q,w) = d(q’,w) for all q,¢' € Q.

We can also write this as |Q. w| = 1.
Any word w with this property is a reset word for <.

Other names:
e for automata: directable, cofinal, collapsible, etc;
e for words: directing, recurrent, synchronizing, etc.
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8. An Example
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8. An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1
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8. An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1
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9. Cerny's Paper

The notion was formalized in 1964 in a paper by Jan Cerny
(Pozndmka k homogénnym eksperimentom s kone&nymi
automatami, Matematicko-fyzikalny Casopis Slovensk. Akad. Vied,

14, no.3, 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.
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The notion was formalized in 1964 in a paper by Jan Cerny
(Pozndmka k homogénnym eksperimentom s kone&nymi
automatami, Matematicko-fyzikalny Casopis Slovensk. Akad. Vied,
14, no.3, 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.
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9. Cerny's Paper

The notion was formalized in 1964 in a paper by Jan Cerny
(Pozndmka k homogénnym eksperimentom s kone&nymi
automatami, Matematicko-fyzikalny Casopis Slovensk. Akad. Vied,
14, no.3, 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.

Think of a satellite which loops around the Moon and cannot be
controlled from the Earth while “behind” the Moon (Cerny’s
original motivation).
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10. Other Sources

It is not surprising that synchronizing automata were re-invented a
number of times:
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It is not surprising that synchronizing automata were re-invented a
number of times:

e The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.
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10. Other Sources

It is not surprising that synchronizing automata were re-invented a
number of times:

e The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.

e Cerny’s paper published in Slovak language remained unknown in
the English-speaking world for quite a long time.
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10. Other Sources

It is not surprising that synchronizing automata were re-invented a
number of times:

e The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.
e Cerny’s paper published in Slovak language remained unknown in
the English-speaking world for quite a long time.

Example: A. E. Laemmel, B. Rudner, Study of the application of
coding theory, Report PIBEP-69-034, Polytechnic Inst. Brooklyn,
Dept. Electrophysics, Farmingdale, N.Y., 94 pp.
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11. Crash Course in Coding Theory

A prefix code over a finite alphabet ¥ is a set X of words in X*
such that no word of X is a prefix of another word of X.
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such that no word of X is a prefix of another word of X. A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet.
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11. Crash Course in Coding Theory

A prefix code over a finite alphabet ¥ is a set X of words in X*
such that no word of X is a prefix of another word of X. A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet. A maximal prefix code X over X is
synchronized if there is a word x € X* such that for any word

w € ¥*, one has wx € X*. Such a word x is called a synchronizing
word for X.
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11. Crash Course in Coding Theory

A prefix code over a finite alphabet ¥ is a set X of words in X*
such that no word of X is a prefix of another word of X. A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet. A maximal prefix code X over X is
synchronized if there is a word x € X* such that for any word

w € ¥*, one has wx € X*. Such a word x is called a synchronizing
word for X.

The advantage of synchronized codes is that they are able to
recover after a loss of synchronization between the decoder and
the coder caused by channel errors.
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12. Synchronized Codes

¥ = {0,1}, X = {000,0010,0011,010,0110,0111, 10,110, 111}
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 000
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 0001|0010
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 000/0010]0111]...
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 000[0010|0111]...
Received 100 0010 0111 ...
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each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing

word for X,
Sent 000]0010|0111]...
Received 1000010 O0111...
Decoded 10
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 000/0010|0111]...
Received 100 0010 0111 ...
Decoded 101|000
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 000/0010|0111]...
Received 100 0010 0111 ...
Decoded 10]000]|10
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 0000010 |0111]...
Received 1000010 0111...
Decoded 10|000|10|0111]...
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12. Synchronized Codes

¥ ={0,1}, X = {000, 0010,0011,010,0110,0111,10,110,111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, ... is a synchronizing
word for X.

Sent 0000010 |0111]...
Received 1000010 0111...
Decoded 10|000|10|0111]...

The vertical lines show the partition of each stream into code
words and the boldfaced code words indicate the position at which
the decoder resynchronizes.
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13. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be
implemented by a DFA.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata



13. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be
implemented by a DFA.

@ W @ m @
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13. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be

implemented by a DFA.
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13. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be
implemented by a DFA.

0] (@D [o10] @D [110] [i1s

b b
[0010][0011][0110] 0111 ]

Synchronized codes precisely correspond to synchronizing
automata!

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata



14. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a
useful tool for testing of reactive systems (first circuits, later
protocols)
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Since the 60s synchronizing automata have been considered as a
useful tool for testing of reactive systems (first circuits, later
protocols) and have been also applied in coding theory.

In the 80s, the notion was reinvented by engineers working in a
branch of robotics which deals with part handling problems in
industrial automation.

Suppose that one of the parts of a certain device has the following
shape:
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14. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a
useful tool for testing of reactive systems (first circuits, later
protocols) and have been also applied in coding theory.

In the 80s, the notion was reinvented by engineers working in a
branch of robotics which deals with part handling problems in
industrial automation.

Suppose that one of the parts of a certain device has the following
shape:

Such parts arrive at manufacturing sites in boxes and they need to
be sorted and oriented before assembly.
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15. Re-inventing by Engineers

Assume that only four initial orientations of the part shown above
are possible, namely, the following ones:

{ i
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15. Re-inventing by Engineers

Assume that only four initial orientations of the part shown above
are possible, namely, the following ones:

{ i

Suppose that prior the assembly the part should take the
‘bump-left’ orientation (the second one in the picture). Thus, one
has to construct an orienter which action will put the part in the
prescribed position independently of its initial orientation.
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16. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.
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16. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.

A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.
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16. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.

A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.

N

Being curried by the belt, the part then is forced to turn 90°
clockwise.
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We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.

A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.
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Being curried by the belt, the part then is forced to turn 90°
clockwise.
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17. Re-inventing by Engineers

A low obstacle has the same effect whenever the part is in the
“bump-down” orientation; otherwise it does not touch the part
which therefore passes by without changing the orientation.
The following schema summarizes how the obstacles effect the
orientation of the part in question:
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18. Re-inventing by Engineers

We met this picture a few slides ago:

— this was our example of a synchronizing automaton, and we saw
that abbbabbba is a reset sequence of actions.
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18. Re-inventing by Engineers

We met this picture a few slides ago:

— this was our example of a synchronizing automaton, and we saw
that abbbabbba is a reset sequence of actions. Hence the series of
obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low

yields the desired sensorless orienter gy b, St Petersburg, November 13, 2010
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19. Possible Use in Biocomputing

In DNA-computing, there is a fast progressing work by Ehud
Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191-2196, etc).
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autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
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They have produced a solution containing 3 x 10%? identical
DNA-based automata per ul.
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autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191-2196, etc).

They have produced a solution containing 3 x 10%? identical
DNA-based automata per ul. These automata can work in parallel
on different inputs (DNA strands), thus ending up in different and
unpredictable states.
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19. Possible Use in Biocomputing

In DNA-computing, there is a fast progressing work by Ehud
Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191-2196, etc).

They have produced a solution containing 3 x 10%? identical
DNA-based automata per ul. These automata can work in parallel
on different inputs (DNA strands), thus ending up in different and
unpredictable states. One has to feed the automata with an reset
sequence (again encoded by a DNA-strand) in order to get them
ready for a new use.
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20. Outline of this Course

e From the viewpoint of applications, real or yet imaginary,
algorithmic issues are of crucial importance.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata



20. Outline of this Course

e From the viewpoint of applications, real or yet imaginary,
algorithmic issues are of crucial importance.

e Synchronizing automata constitute an interesting combinatorial
object. Their studies from a combinatorial viewpoint are mainly
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20. Outline of this Course

e From the viewpoint of applications, real or yet imaginary,
algorithmic issues are of crucial importance.

e Synchronizing automata constitute an interesting combinatorial
object. Their studies from a combinatorial viewpoint are mainly
motivated by the Cerny Conjecture.

e Interesting connections to symbolic dynamics have led to the
Road Coloring Problem.

e We present in detail a recent proof of the Cerny Conjecture for
the special case of aperiodic automata.

e There are also interesting connections with the Perron—Frobenius
theory of non-negative matrices.

e We also formulate several tantalizing open problems.
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