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Deterministic finite automata: & = (Q, L, ¢).
o @ the state set

e Y the input alphabet

e §: QXX — Q the transition function
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Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.
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Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.
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Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.

Any w with this property is a reset word for <.
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2. Example
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2. Example

A reset word is abbbabbba. In fact, we will see that this is the
shortest reset word for this automaton.
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3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing?
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3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton

construction.
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Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton
construction.

The power automaton P(«/) of a given DFA & = (Q, ¥, §):
- states are the non-empty subsets of Q,
- 0(P,a) =P.a={d(p,a) | p € P}
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3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton
construction.

The power automaton P(«/) of a given DFA & = (Q, ¥, §):
- states are the non-empty subsets of Q,
- 0(P,a) =P.a={d(p,a) | p € P}

A w € ¥* is a reset word for the DFA o iff w labels a path in
P(&) starting at Q and ending at a singleton.
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4. Example
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4. Example
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5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS.
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5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of <.
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5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of <.

The following result by Cerny gives a polynomial algorithm:
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5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of <.
The following result by Cerny gives a polynomial algorithm:

Proposition. A DFA o/ = (Q, X, 0) is synchronizing iff for every
q,q € Q there exists a word w € X* such that §(q, w) = §(q’, w).
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6. Example
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6. Example

a, Q.a=1{1,2,3};
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6. Example

a, Q.a=1{1,2,3};
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6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
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6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
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6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
abba - babbba, Q .abbababbba = {1}
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6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
abba - babbba, Q .abbababbba = {1}

Observe that the reset word constructed this way is of length 10
while we know a reset word of length 9.
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the

1-subsets of Q.
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the

1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n®):
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n3): the algorithm
makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (2) — (%).
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n3): the algorithm

makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (2) — (). This gives the

n3fn

upper bound *5-".
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n3): the algorithm

makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (2) — (). This gives the

upper bound "3;". Can we do better? What is the exact bound?
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8. A Resource for Improvement
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8. A Resource for Improvement

We see that the shortest path from a light-grey 2-subset to a
singleton do not necessarily pass through all dark-grey 2-subsets.
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8. A Resource for Improvement

We see that the shortest path from a light-grey 2-subset to a
singleton do not necessarily pass through all dark-grey 2-subsets.
Consider a generic step of the algorithm at which states to be
compressed form a set P with |[P|=k >1and let v=a;---ay

with a;j € X, i =1,...,4, be a word of minimum length such that
|P.v| < k.
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9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q.

ai an ar—1
g . ™ NI/
a
al as ap—1 //
> > Lo

Pl R P\
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9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q. Since |Py. ag| < |Py|, there exist two states
q¢, qz € Py such that 6((]3, aﬁ) = 5(q27 aﬁ)'

N O O

ai a a1 ,
> > - q[ - ae
ae/'
a a ar—1 /
> - > qe

Pl R P\
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9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q. Since |Py. ag| < |Py|, there exist two states

qe, Gy € Py such that 6(qq, ag) = 0(qy, ag). Now define 2-subsets
R; = {aqi, qf} C P;, i =1,...,¢, such that §(qj, a;) = gi+1,
6(qj,ai)=qjq fori=1,....,0-1

N O O

' ai ’ a a1 0
91 p) > ™ dp | ayg
a
ai as ag_1 //'
0 >~ {2 > > qy

Pl R P\
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9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q. Since |Py. ag| < |Py|, there exist two states

qe, Gy € Py such that 6(qq, ag) = 0(qy, ag). Now define 2-subsets
R; = {aqi, qf} C P;, i =1,...,¢, such that §(qj, a;) = gi+1,
6(qj,ai)=qjq fori=1,....,0-1

N O O

! al ! as ag—1 ’
91 p) > ™ dp | ayg
ay
ai as ag_1 //'
q1 >~ Q2 - > qe

Pl R P\

The condition that v is a word of minimum length with

|P.v| < |P| implies R; € P; for 1 §J< i</
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10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:
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10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i).
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10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?
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10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

A construction: fix a (k — 2)-subset W of Q, list all (" 5*2)
2-subsets of @\ W and let T; be the union of W with the it
2-subset in the list.
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10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

A construction: fix a (k — 2)-subset W of Q, list all (" 5*2)
2-subsets of @\ W and let T; be the union of W with the it
2-subset in the list. This gives the refreshing sequence T1,..., Ts
of length s = (" 52).
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10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

A construction: fix a (k — 2)-subset W of Q, list all (" 5*2)
2-subsets of @\ W and let T; be the union of W with the it
2-subset in the list. This gives the refreshing sequence T1,..., Ts
of length s = (" 5%2). Is this the maximum?
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11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).
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11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

The proof uses linearization techniques which is quite common in
combinatorics of finite sets.
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11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

The proof uses linearization techniques which is quite common in
combinatorics of finite sets. One reformulates the problem in linear
algebra terms and then uses the corresponding machinery.
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11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

The proof uses linearization techniques which is quite common in
combinatorics of finite sets. One reformulates the problem in linear
algebra terms and then uses the corresponding machinery.

We identify @ with {1,2,...,n} and assign to each k-subset
I ={n,...,ik} the following polynomial D(/) in variables
Xi1, - - -, Xj, over the field of rationals.
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12. Linearization

2 -k—3 2
1 n A Xip  Xj
2 -k—3 2
: : 1k i I " Xy X
/Z{Il,...,lk}r—)D(/): i . .
2 k—3 2

1 i g I Xie  Xi | ek
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12. Linearization

-2 -k—3 2
1 n i - 5 Xip  Xj
. k—3 2
. . 1L b iy -k Xiy X,
I ={it,..., i} = D(I) = | |
2 k—3 2
1 i g I Xie Xl ek

Then one proves that:
e the polynomials D(P1),. .., D(Py) are linearly independent
whenever the k-subsets Pq, ..., P, form a refreshing sequence;
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12. Linearization

-2 -k—3 2
1 n i - 5 Xip  Xj
; 2 -k—3 2
. . 1L b iy -k Xiy X,
/Z{Il,...,lk}r—)D(/): i . .
) k—3 2

1 i g I Xie Xl ek

Then one proves that:

e the polynomials D(P1),. .., D(Py) are linearly independent
whenever the k-subsets Pq, ..., P, form a refreshing sequence;

e the polynomials D(Ty),..., D(Ts) (derived from the “standard”
sequence) generate the linear space spanned by all polynomials of
the form D(/).
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13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)
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13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < "3_"
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13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

)+ ()G (") () -
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13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

)+ )+ () -+ (") () -
6+ @)+ )+ (1))
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13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

)+ )+ () -+ (") () -
6)+ )+ G) -+ ("27)+0)
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13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

B+ )+ @)+ (27)+ () -
(5)+ @)+ G+ (27)+ () -
6+ @)+ (2)+()==(3)-""

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata



14. Example Revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.
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14. Example Revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.
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14. Example Revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.
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15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large:
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15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).
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15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

The behaviour of the greedy algorithm on average is not yet
understood;
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15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

The behaviour of the greedy algorithm on average is not yet
understood; practically it behaves rather well.
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15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

The behaviour of the greedy algorithm on average is not yet
understood; practically it behaves rather well.

Now we aim to prove that under standard assumptions (like

NP # coNP) no polynomial algorithm, even non-deterministic, can
find the minimum length of reset words for synchronizing
automata.
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16. Short Reset Words are Hard to Decide

Consider the following decision problem:

SHORT-RESET-WORD: Given a synchronizing automaton
& = (Q,X,0) and a positive integer ¢, is it true that o/ has a
reset word of length £7
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16. Short Reset Words are Hard to Decide

Consider the following decision problem:

SHORT-RESET-WORD: Given a synchronizing automaton
& = (Q,X,0) and a positive integer ¢, is it true that o/ has a
reset word of length £7

Clearly, SHORT-RESET-WORD belongs to NP: one can
non-deterministically guess a word w € L* of length £ and then
check if w is a reset word for &7 in time £|Q).
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16. Short Reset Words are Hard to Decide

Consider the following decision problem:

SHORT-RESET-WORD: Given a synchronizing automaton
& = (Q,X,0) and a positive integer ¢, is it true that o/ has a
reset word of length £7

Clearly, SHORT-RESET-WORD belongs to NP: one can
non-deterministically guess a word w € L* of length £ and then
check if w is a reset word for &7 in time £|Q).

Several authors have observed that SHORT-RESET-WORD is
NP-hard by a transparent reduction from SAT.
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17. Reduction from SAT

Given an instance 9 of SAT with n variables xi,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1)) with 2 input letters a
and b and the state set {z,q;;j[1<i<m, 1<j<n+1}.
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Given an instance 9 of SAT with n variables xi,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1)) with 2 input letters a
and b and the state set {z,q;;j[1<i<m, 1<j<n+1}.
The transitions are defined by:
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17. Reduction from SAT

Given an instance ¥ of SAT with n variables x,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1) with 2 input letters a
and b and the state set {z,q;; |1 <i<m, 1 <j<n+1}
The transitions are defined by:

z if x; occurs in ¢; . .
gij-a= ! o for 1<i<m, 1<j<n
gi j+1 otherwise
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17. Reduction from SAT

Given an instance ¥ of SAT with n variables x,...,x, and m
clauses ci, ..., cm, one constructs /(1)) with 2 input letters a
and b and the state set {z,q;; |1 <i<m, 1 <j<n+1}
The transitions are defined by:

z if x; occurs in ¢; . )
Gij-a= ’ 7 for1<i<m1<j<n
gi j+1 otherwise

z if =x; occurs in ¢; . .
Gij-b= ST for1<i<m, 1< <
gij+1 otherwise

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata



17. Reduction from SAT

Given an instance 9 of SAT with n variables xi,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1)) with 2 input letters a
and b and the state set {z,q;; |1 <i<m, 1 <j<n+1}
The transitions are defined by:

z if x; occurs in ¢; . .
gij.-a= J } " for1<i<m,1<j<n
gi j+1 otherwise

z if =x; occurs in ¢; . .

gij.-b= J ) " for1<i<m,1<j<n
gi j+1 otherwise

Qint1-@=Qint1-b=2z for 1 <7 < m;

z.a=z.b==z.
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18. Reduction from SAT

For ¢ = {x1 Vx2 V x3, =x1 V x2, =x2 V x3, =x2 V —ix3}:
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18. Reduction from SAT

For ¢y = {x1 Vx2 V x3, =x1 V x2, =x2 V X3, X2 V —x3 }:

H
E

E
@
J)
uO‘
@
[\
&
[\
®

g3,1 a,b@ a @ b q3,4
g2,1 a @ b @ 3 b 92,4

E
®
® G
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19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if %) is satisfiable.
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19. Reduction from SAT

It is easy to see that &7(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if % is satisfiable.
In the above example the truth assignment x3 = x =0, x3 =1
satisfies ¢ and the word bba resets <7/ (1)).
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19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if % is satisfiable.
In the above example the truth assignment x3 = x =0, x3 =1
satisfies ¢ and the word bba resets <7/ (1)).

If we change ¥ to {x1 V x2, =x1 V X2, =x2 V X3, =x2 V —x3}, it
becomes unsatisfiable and 27 (1)) is reset by no word of length 3.
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19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if %) is satisfiable.

Thus, assigning the instance (2(1)), n) of SHORT-RESET-WORD
to an arbitrary n-variable instance ¢ of SAT, one gets a
polynomial reduction
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19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if %) is satisfiable.

Thus, assigning the instance (2(1)), n) of SHORT-RESET-WORD
to an arbitrary n-variable instance ¢ of SAT, one gets a
polynomial reduction which is in fact parsimonious.
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20. Reduction from SAT

For ¥ = {x1 V x2, =x1 V x2, =x2 V X3, =xp V —x3}:
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20. Reduction from SAT

For ¢ = {x1 V x2, X1 V x2, %2 V X3, =x2 V ~x3 }:

H
E

E
@
J)
uO‘
@
[\
&
[\
®

g3,1 a,b@ a @ b q3,4
g2,1 a @ b @ 3 b 92,4
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21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7
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21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:
SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(v), n + 1) of SHORTEST-RESET- WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable.
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21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(%), n+ 1) of SHORTEST-RESET-WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable. This is a polynomial reduction from the negation of
SAT to SHORTEST-RESET-WORD whence the latter problem is
coNP-hard.
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21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(%), n+ 1) of SHORTEST-RESET-WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable. This is a polynomial reduction from the negation of
SAT to SHORTEST-RESET-WORD whence the latter problem is
coNP-hard. As a corollary, SHORTEST-RESET-WORD cannot
belong to NP unless NP = coNP.
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21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(%), n+ 1) of SHORTEST-RESET-WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable. This is a polynomial reduction from the negation of
SAT to SHORTEST-RESET-WORD whence the latter problem is
coNP-hard. As a corollary, SHORTEST-RESET-WORD cannot
belong to NP unless NP = coNP.

Recently, SHORTEST-RESET-WORD has shown to be complete for
DP (Difference Polynomial-Time).
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22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.
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22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

DP is contained in PNPI°8l (for every problem in DP two oracle
queries suffice) and the inclusion is believed to be strict.
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22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

DP is contained in PNPI°8l (for every problem in DP two oracle
queries suffice) and the inclusion is believed to be strict.

The problem of computing the minimum length of reset words is
complete for the functional analogue FPNPIo8l of pNPllog]
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22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

DP is contained in PNPI°8l (for every problem in DP two oracle
queries suffice) and the inclusion is believed to be strict.

The problem of computing the minimum length of reset words is
complete for the functional analogue FPNPIo8l of pNPllog]

Finding the shortest reset words may be even harder than
computing their length but the exact complexity is not yet known.
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23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!
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23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exist a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kXxXminimum possible length of

a reset word (CSR-2010).
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23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exist a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kXxXminimum possible length of

a reset word (CSR-2010).

Open problem: a similar non-approximation result for
non-deterministic polynomial algorithms.
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23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exist a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kXxXminimum possible length of

a reset word (CSR-2010).

Open problem: a similar non-approximation result for
non-deterministic polynomial algorithms.

Open problem: is approximating within a logarithmic factor
possible?
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