Synchronizing Finite Automata

Il. Algorithmic and Complexity Issues

Mikhail Volkov

Ural State University, Ekaterinburg, Russia

Vel M

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Deterministic finite automata: & = (Q, L, ¢).
o @ the state set

e Y the input alphabet

e §: QXX — Q the transition function

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.

Any w with this property is a reset word for <.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

2. Example

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

2. Example

A reset word is abbbabbba. In fact, we will see that this is the
shortest reset word for this automaton.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing?

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton

construction.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton
construction.

The power automaton P(«/) of a given DFA & = (Q, ¥, §):
- states are the non-empty subsets of Q,
- 0(P,a) =P.a={d(p,a) | p € P}

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton
construction.

The power automaton P(«/) of a given DFA & = (Q, ¥, §):
- states are the non-empty subsets of Q,
- 0(P,a) =P.a={d(p,a) | p € P}

A w € ¥* is a reset word for the DFA o iff w labels a path in
P(&) starting at Q and ending at a singleton.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

4. Example

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

4. Example

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of <.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of <.

The following result by Cerny gives a polynomial algorithm:

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

5. Polynomial Algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from @ to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of <.
The following result by Cerny gives a polynomial algorithm:

Proposition. A DFA o/ = (Q, X, 0) is synchronizing iff for every
q,q € Q there exists a word w € X* such that §(q, w) = §(q’, w).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

a, Q.a=1{1,2,3};

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

a, Q.a=1{1,2,3};

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
abba - babbba, Q .abbababbba = {1}

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

6. Example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
abba - babbba, Q .abbababbba = {1}

Observe that the reset word constructed this way is of length 10
while we know a reset word of length 9.
CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the

1-subsets of Q.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the

1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov

Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n®):

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n3): the algorithm
makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (2) — (%).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n3): the algorithm

makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (2) — (). This gives the

n3fn

upper bound *5-".

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n3): the algorithm

makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (2) — (). This gives the

upper bound "3;". Can we do better? What is the exact bound?

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

8. A Resource for Improvement

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

8. A Resource for Improvement

We see that the shortest path from a light-grey 2-subset to a
singleton do not necessarily pass through all dark-grey 2-subsets.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

8. A Resource for Improvement

We see that the shortest path from a light-grey 2-subset to a
singleton do not necessarily pass through all dark-grey 2-subsets.
Consider a generic step of the algorithm at which states to be
compressed form a set P with |[P|=k >1and let v=a;---ay

with a;j € X, i =1,...,4, be a word of minimum length such that
|P.v| < k.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q.

ai an ar—1
g . ™ NI/
a
al as ap—1 //
> > Lo

Pl R P\

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q. Since |Py. ag| < |Py|, there exist two states
q¢, qz € Py such that 6((]3, aﬁ) = 5(q27 aﬁ)'

N O O

ai a a1 ,
> > - q[- ae
ae/'
a a ar—1 /
> - > qe

Pl R P\

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q. Since |Py. ag| < |Py|, there exist two states

qe, Gy € Py such that 6(qq, ag) = 0(qy, ag). Now define 2-subsets
R; = {aqi, qf} C P;, i =1,...,¢, such that §(qj, a;) = gi+1,
6(qj,ai)=qjq fori=1,....,0-1

N O O

' ai ’ a a1 0
91 p) > ™ dp | ayg
a
ai as ag_1 //'
0 >~ {2 > > qy

Pl R P\

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

9. Studying Generic Step

Thesets PP =P, P=P1.a1, ..., Pp=Pp 1.a; 1 are
k-subsets of Q. Since |Py. ag| < |Py|, there exist two states

qe, Gy € Py such that 6(qq, ag) = 0(qy, ag). Now define 2-subsets
R; = {aqi, qf} C P;, i =1,...,¢, such that §(qj, a;) = gi+1,
6(qj,ai)=qjq fori=1,....,0-1

N O O

! al ! as ag—1 ’
91 p) > ™ dp | ayg
ay
ai as ag_1 //'
q1 >~ Q2 - > qe

Pl R P\

The condition that v is a word of minimum length with

|P.v| < |P| implies R; € P; for 1 §J< i</
SClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

A construction: fix a (k — 2)-subset W of Q, list all (" 5*2)
2-subsets of @\ W and let T; be the union of W with the it
2-subset in the list.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

A construction: fix a (k — 2)-subset W of Q, list all (" 5*2)
2-subsets of @\ W and let T; be the union of W with the it
2-subset in the list. This gives the refreshing sequence T1,..., Ts
of length s = (" 52).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

10. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of
finite sets:

Let Q be an n-set, Py,..., Py a sequence of its k-subsets (k > 1)
such that each P;, 1 < i </, includes a “fresh” 2-subset that does
not occur in any previous P; (1 <j < i). How long can such
refreshing sequences be?

A construction: fix a (k — 2)-subset W of Q, list all (" 5*2)
2-subsets of @\ W and let T; be the union of W with the it
2-subset in the list. This gives the refreshing sequence T1,..., Ts
of length s = (" 5%2). Is this the maximum?

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

The proof uses linearization techniques which is quite common in
combinatorics of finite sets.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

The proof uses linearization techniques which is quite common in
combinatorics of finite sets. One reformulates the problem in linear
algebra terms and then uses the corresponding machinery.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

11. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the
affirmative) by Peter Frankl (An extremal problem for two families
of sets, Eur. J. Comb., 3 (1982) 125-127).

The proof uses linearization techniques which is quite common in
combinatorics of finite sets. One reformulates the problem in linear
algebra terms and then uses the corresponding machinery.

We identify @ with {1,2,...,n} and assign to each k-subset
I ={n,...,ik} the following polynomial D(/) in variables
Xi1, - - -, Xj, over the field of rationals.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

12. Linearization

2 -k—3 2
1 n A Xip Xj
2 -k—3 2
: : 1k i I " Xy X
/Z{Il,...,lk}r—)D(/): i . .
2 k—3 2

1 i g I Xie Xi | ek

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

12. Linearization

-2 -k—3 2
1 n i - 5 Xip Xj
. k—3 2
. . 1L b iy -k Xiy X,
I ={it,..., i} = D(I) = | |
2 k—3 2
1 i g I Xie Xl ek

Then one proves that:
e the polynomials D(P1),. .., D(Py) are linearly independent
whenever the k-subsets Pq, ..., P, form a refreshing sequence;

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

12. Linearization

-2 -k—3 2
1 n i - 5 Xip Xj
; 2 -k—3 2
. . 1L b iy -k Xiy X,
/Z{Il,...,lk}r—)D(/): i . .
) k—3 2

1 i g I Xie Xl ek

Then one proves that:

e the polynomials D(P1),. .., D(Py) are linearly independent
whenever the k-subsets Pq, ..., P, form a refreshing sequence;

e the polynomials D(Ty),..., D(Ts) (derived from the “standard”
sequence) generate the linear space spanned by all polynomials of
the form D(/).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < "3_"

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

)+ ()G (") () -

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

)+)+ () -+ (") () -
6+ @)+)+ (1))

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

)+)+ () -+ (") () -
6)+)+ G) -+ ("27)+0)

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

13. Results

Thus, in the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("~ k+2)

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < #:

B+)+ @)+ (27)+ () -
(5)+ @)+ G+ (27)+ () -
6+ @)+ (2)+()==(3)-""

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

14. Example Revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

14. Example Revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

14. Example Revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large:

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

The behaviour of the greedy algorithm on average is not yet
understood;

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

The behaviour of the greedy algorithm on average is not yet
understood; practically it behaves rather well.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

15. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n? log n).

The behaviour of the greedy algorithm on average is not yet
understood; practically it behaves rather well.

Now we aim to prove that under standard assumptions (like

NP # coNP) no polynomial algorithm, even non-deterministic, can
find the minimum length of reset words for synchronizing
automata.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

16. Short Reset Words are Hard to Decide

Consider the following decision problem:

SHORT-RESET-WORD: Given a synchronizing automaton
& = (Q,X,0) and a positive integer ¢, is it true that o/ has a
reset word of length £7

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

16. Short Reset Words are Hard to Decide

Consider the following decision problem:

SHORT-RESET-WORD: Given a synchronizing automaton
& = (Q,X,0) and a positive integer ¢, is it true that o/ has a
reset word of length £7

Clearly, SHORT-RESET-WORD belongs to NP: one can
non-deterministically guess a word w € L* of length £ and then
check if w is a reset word for &7 in time £|Q).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

16. Short Reset Words are Hard to Decide

Consider the following decision problem:

SHORT-RESET-WORD: Given a synchronizing automaton
& = (Q,X,0) and a positive integer ¢, is it true that o/ has a
reset word of length £7

Clearly, SHORT-RESET-WORD belongs to NP: one can
non-deterministically guess a word w € L* of length £ and then
check if w is a reset word for &7 in time £|Q).

Several authors have observed that SHORT-RESET-WORD is
NP-hard by a transparent reduction from SAT.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

17. Reduction from SAT

Given an instance 9 of SAT with n variables xi,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1)) with 2 input letters a
and b and the state set {z,q;;j[1<i<m, 1<j<n+1}.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

17. Reduction from SAT

Given an instance 9 of SAT with n variables xi,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1)) with 2 input letters a
and b and the state set {z,q;;j[1<i<m, 1<j<n+1}.
The transitions are defined by:

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

17. Reduction from SAT

Given an instance ¥ of SAT with n variables x,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1) with 2 input letters a
and b and the state set {z,q;; |1 <i<m, 1 <j<n+1}
The transitions are defined by:

z if x; occurs in ¢; . .
gij-a= ! o for 1<i<m, 1<j<n
gi j+1 otherwise

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

17. Reduction from SAT

Given an instance ¥ of SAT with n variables x,...,x, and m
clauses ci, ..., cm, one constructs /(1)) with 2 input letters a
and b and the state set {z,q;; |1 <i<m, 1 <j<n+1}
The transitions are defined by:

z if x; occurs in ¢; .)
Gij-a= ’ 7 for1<i<m1<j<n
gi j+1 otherwise

z if =x; occurs in ¢; . .
Gij-b= ST for1<i<m, 1< <
gij+1 otherwise

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

17. Reduction from SAT

Given an instance 9 of SAT with n variables xi,...,x, and m
clauses ci, ..., Cm, one constructs &7 (1)) with 2 input letters a
and b and the state set {z,q;; |1 <i<m, 1 <j<n+1}
The transitions are defined by:

z if x; occurs in ¢; . .
gij.-a= J } " for1<i<m,1<j<n
gi j+1 otherwise

z if =x; occurs in ¢; . .

gij.-b= J) " for1<i<m,1<j<n
gi j+1 otherwise

Qint1-@=Qint1-b=2z for 1 <7 < m;

z.a=z.b==z.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

18. Reduction from SAT

For ¢ = {x1 Vx2 V x3, =x1 V x2, =x2 V x3, =x2 V —ix3}:

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

18. Reduction from SAT

For ¢y = {x1 Vx2 V x3, =x1 V x2, =x2 V X3, X2 V —x3 }:

H
E

E
@
J)
uO‘
@
[\
&
[\
®

g3,1 a,b@ a @ b q3,4
g2,1 a @ b @ 3 b 92,4

E
®
® G

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if %) is satisfiable.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

19. Reduction from SAT

It is easy to see that &7(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if % is satisfiable.
In the above example the truth assignment x3 = x =0, x3 =1
satisfies ¢ and the word bba resets <7/ (1)).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if % is satisfiable.
In the above example the truth assignment x3 = x =0, x3 =1
satisfies ¢ and the word bba resets <7/ (1)).

If we change ¥ to {x1 V x2, =x1 V X2, =x2 V X3, =x2 V —x3}, it
becomes unsatisfiable and 27 (1)) is reset by no word of length 3.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if %) is satisfiable.

Thus, assigning the instance (2(1)), n) of SHORT-RESET-WORD
to an arbitrary n-variable instance ¢ of SAT, one gets a
polynomial reduction

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

19. Reduction from SAT

It is easy to see that &/(1)) is reset by every word of length n+1
and is reset by a word of length n if and only if %) is satisfiable.

Thus, assigning the instance (2(1)), n) of SHORT-RESET-WORD
to an arbitrary n-variable instance ¢ of SAT, one gets a
polynomial reduction which is in fact parsimonious.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

20. Reduction from SAT

For ¥ = {x1 V x2, =x1 V x2, =x2 V X3, =xp V —x3}:

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

20. Reduction from SAT

For ¢ = {x1 V x2, X1 V x2, %2 V X3, =x2 V ~x3 }:

H
E

E
@
J)
uO‘
@
[\
&
[\
®

g3,1 a,b@ a @ b q3,4
g2,1 a @ b @ 3 b 92,4

2|
Q
[y
=
o
Q
—
o
Q
=
o
o
Q
[y
S

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:
SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(v), n + 1) of SHORTEST-RESET- WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(%), n+ 1) of SHORTEST-RESET-WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable. This is a polynomial reduction from the negation of
SAT to SHORTEST-RESET-WORD whence the latter problem is
coNP-hard.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(%), n+ 1) of SHORTEST-RESET-WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable. This is a polynomial reduction from the negation of
SAT to SHORTEST-RESET-WORD whence the latter problem is
coNP-hard. As a corollary, SHORTEST-RESET-WORD cannot
belong to NP unless NP = coNP.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

21. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

SHORTEST-RESET-WORD: Given a synchronizing automaton &/
and a positive integer £, is it true that the minimum length of a
reset word for A is equal to £7

Assigning the instance (A(%), n+ 1) of SHORTEST-RESET-WORD
to an arbitrary system % of clauses on n variables, one sees that
the answer to the instance is “Yes” if and only if ¢ is not
satisfiable. This is a polynomial reduction from the negation of
SAT to SHORTEST-RESET-WORD whence the latter problem is
coNP-hard. As a corollary, SHORTEST-RESET-WORD cannot
belong to NP unless NP = coNP.

Recently, SHORTEST-RESET-WORD has shown to be complete for
DP (Difference Polynomial-Time).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

DP is contained in PNPI°8l (for every problem in DP two oracle
queries suffice) and the inclusion is believed to be strict.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

DP is contained in PNPI°8l (for every problem in DP two oracle
queries suffice) and the inclusion is believed to be strict.

The problem of computing the minimum length of reset words is
complete for the functional analogue FPNPIo8l of pNPllog]

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

22. Computing is Harder than Deciding

PNPllog] is the class of all problems that can be solved by a
deterministic polynomial-time Turing machine that has an access
to an oracle for an NP-complete problem, with the number of
queries being logarithmic in the size of the input.

DP is contained in PNPI°8l (for every problem in DP two oracle
queries suffice) and the inclusion is believed to be strict.

The problem of computing the minimum length of reset words is
complete for the functional analogue FPNPIo8l of pNPllog]

Finding the shortest reset words may be even harder than
computing their length but the exact complexity is not yet known.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exist a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kXxXminimum possible length of

a reset word (CSR-2010).

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exist a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kXxXminimum possible length of

a reset word (CSR-2010).

Open problem: a similar non-approximation result for
non-deterministic polynomial algorithms.

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

23. Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exist a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kXxXminimum possible length of

a reset word (CSR-2010).

Open problem: a similar non-approximation result for
non-deterministic polynomial algorithms.

Open problem: is approximating within a logarithmic factor
possible?

CSClub, St Petersburg, November 13, 2010

Mikhail Volkov Synchronizing Finite Automata

