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Deterministic finite automata: & = (Q, L, ¢).
e @ the state set

e ¥ the input alphabet

e §: QXX — Q the transition function
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Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e ¥ the input alphabet

e §: Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢', w)
for all ¢, q' € Q.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e ¥ the input alphabet

e §: Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢', w)
for all ¢, q' € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.
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Deterministic finite automata: & = (Q, L, ¢).

e @ the state set

e ¥ the input alphabet

e §: Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢', w)
for all ¢, q' € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.

Any w with this property is a reset word for <.
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2. Example
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2. Example

A reset word is abbbabbba. In fact, we have verified that this is
the shortest reset word for this automaton.
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3. The Cerny Series

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?
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3. The Cerny Series

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?
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3. The Cerny Series

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?

In his 1964 paper Jan Cerny constructed a series €, n=2,3,...,
of synchronizing automata over 2 letters.
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3. The Cerny Series

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?

In his 1964 paper Jan Cerny constructed a series €, n=2,3,...,
of synchronizing automata over 2 letters.

The states of %, are the residues modulo n, and the input letters a
and b act as follows:

0(0,a) =1, 6(m,a) = mfor 0 < m < n, 6(m,b) = m+1 (mod n).
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3. The Cerny Series

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?

In his 1964 paper Jan Cerny constructed a series €, n=2,3,...,
of synchronizing automata over 2 letters.

The states of %, are the residues modulo n, and the input letters a
and b act as follows:

0(0,a) =1, 6(m,a) = mfor 0 < m < n, 6(m,b) = m+1 (mod n).

The automaton in the previous slide is 4.
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4. The Cerny Series

Here is a generic automaton from the Cerny series:
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4. The Cerny Series

Here is a generic automaton from the Cerny series:

Cerny has proved that the shortest reset word for %, is
(ab™"1)"=23 of length (n — 1)
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4. The Cerny Series

Here is a generic automaton from the Cerny series:

Cerny has proved that the shortest reset word for %, is
(ab""1)"2a of length (n — 1)2. As other results from Cerny’s
paper of 1964, this nice series of automata has been rediscovered
many times.
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We present a proof of this result using a solitaire-like game.
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We present a proof of this result using a solitaire-like game.

e The digraph of %, — the game-board.
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We present a proof of this result using a solitaire-like game.

e The digraph of %, — the game-board.

e The initial position — each state holds a coin, all coins are
pairwise distinct.
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We present a proof of this result using a solitaire-like game.

e The digraph of %, — the game-board.

e The initial position — each state holds a coin, all coins are
pairwise distinct.

e Each letter ¢ € {a, b} defines a move — coins slide along
the arrows labelled ¢ and, whenever two coins meet at the
state 1, the coin arriving from 0 is removed.
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We present a proof of this result using a solitaire-like game.

e The digraph of %, — the game-board.

e The initial position — each state holds a coin, all coins are
pairwise distinct.

e Each letter ¢ € {a, b} defines a move — coins slide along
the arrows labelled ¢ and, whenever two coins meet at the
state 1, the coin arriving from 0 is removed.

e The goal — to free all but one states.
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We present a proof of this result using a solitaire-like game.

e The digraph of %, — the game-board.

e The initial position — each state holds a coin, all coins are
pairwise distinct.

e Each letter ¢ € {a, b} defines a move — coins slide along
the arrows labelled ¢ and, whenever two coins meet at the
state 1, the coin arriving from 0 is removed.

e The goal — to free all but one states.

e The only coin that remains at the end of the game is the
golden coin G.
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6. Example
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7. Key Idea

Let Py be an initial distribution of coins, w a reset word.
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7. Key Idea

Let Py be an initial distribution of coins, w a reset word. Denote
by P; the position that arises when we apply the prefix of w of
length i to the position Py.
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7. Key Idea

Let Py be an initial distribution of coins, w a reset word. Denote
by P; the position that arises when we apply the prefix of w of
length i to the position Py. We want to define the weight wg(P;)

of the position such that
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7. Key Idea

Let Py be an initial distribution of coins, w a reset word. Denote
by P; the position that arises when we apply the prefix of w of
length i to the position Py. We want to define the weight wg(P;)
of the position such that
(i) wg(Po) > n(n—1) and wg(P,|) < n—1;
(ii) for each i =1,...,|w]|, the action of the i letter of w
decreases the weight by 1 at most, that is,
1> wg(Pi—1) — wg(P;).
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7. Key Idea

Let Py be an initial distribution of coins, w a reset word. Denote
by P; the position that arises when we apply the prefix of w of
length i to the position Py. We want to define the weight wg(P;)
of the position such that

(i) wg(Po) > n(n—1) and wg(P,|) < n—1;
(ii) for each i =1,...,|w]|, the action of the i letter of w

decreases the weight by 1 at most, that is,
1> wg(Pi—1) — wg(P;).

|w|

[w
Then |w| =) 1> (wg(Pi_1)—wg(Pi)) =
i=1 i=1

wg(Po) — wg(Plw) > n(n—1) = (n—1) = (n - 1)%
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8. Constructing the Weight Function

The trick consists in letting the weight of each coin depend on its
relative location w.r.t. the golden coin.
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8. Constructing the Weight Function

The trick consists in letting the weight of each coin depend on its
relative location w.r.t. the golden coin.

If a coin C is present in a position P;, let si(C) be the state
covered with C in this position. We define the weight of C in the
position P; as

wg(C,P;) =n-d;i(C) + m;(C)

where m;(C) is the residue of n — s;(C) modulo n and d;(C) is the
number of steps from s;(C) to s;(G) in the ‘main circle’ of our
automaton. (Recall that G stands for the golden coin G which is
present in all positions.)

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



8. Constructing the Weight Function

The trick consists in letting the weight of each coin depend on its
relative location w.r.t. the golden coin.

If a coin C is present in a position P;, let si(C) be the state
covered with C in this position. We define the weight of C in the
position P; as

wg(C,P;) =n-d;i(C) + m;(C)

where m;(C) is the residue of n — s;(C) modulo n and d;(C) is the
number of steps from s;(C) to s;(G) in the ‘main circle’ of our
automaton. (Recall that G stands for the golden coin G which is
present in all positions.)

The weight of P; is the maximum weight of the coins present in
this position.
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9. Example
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9. Example

Assume that the yellow coin is the golden one.
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9. Example

Assume that the yellow coin is the golden one. Then its weight is
5-3=2.
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9. Example

Assume that the yellow coin is the golden one. Then its weight is
5 — 3 = 2. The weight of the cyan coinis5-1+ (5 —2) =8.
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9. Example

Assume that the yellow coin is the golden one. Then its weight is
5 — 3 =2. The weight of the cyan coinis 5-1+ (5 —2) =8. The
weight of the gray coin is 5-3 4+ 0 = 15.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



9. Example

Assume that the yellow coin is the golden one. Then its weight is
5 — 3 = 2. The weight of the cyan coinis5-1+ (5 —2) =8. The
weight of the gray coin is 5-3 4+ 0 = 15. The weight of the
magenta coin is 5-4 + (5 — 4) = 21, and this is the weight of the
position.
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10. Properties of the Weight Function

We have to check that our weight function satisfies the conditions
(i) wg(Po) > n(n—1) and Wg(P|W‘) <n-—-1;
(i) 1> wg(Pi—1) —wg(P;) foreach i =1,...,|w|.
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10. Properties of the Weight Function

We have to check that our weight function satisfies the conditions
(i) we(Po) > n(n — 1) and wg(Pl,,) < n— L

(i) 1> wg(Pi—1) —wg(P;) foreach i =1,...,|w|.

In the initial position all states are covered with coins. Consider

the coin C that covers the state sp(G) + 1(mod n), that is the
state in one step clockwise after the state covered with the golden

coin. Then dy(C) = n — 1 whence

wg(C,Py) =n-(n—1) 4+ mg(C) > n(n—1).
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10. Properties of the Weight Function

We have to check that our weight function satisfies the conditions
(i) we(Po) > n(n — 1) and wg(Pl,,) < n— L

(i) 1> wg(Pi—1) —wg(P;) foreach i =1,...,|w|.

In the initial position all states are covered with coins. Consider

the coin C that covers the state sp(G) + 1(mod n), that is the

state in one step clockwise after the state covered with the golden
coin. Then dy(C) = n — 1 whence

wg(C,Py) =n-(n—1)4+ mp(C) > n(n —1).
Since the weight of a position is not less than the weight of any

coin in this position, we have wg(Pp) > n(n — 1).
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11. Properties of the Weight Function

In the final position only the golden coin G remains, whence the
weight of P, is the weight of G. Clearly,
wg(G, P;) = mi(G) < n—1 for any position P;.
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11. Properties of the Weight Function

In the final position only the golden coin G remains, whence the
weight of P, is the weight of G. Clearly,

wg(G, P;) = mi(G) < n—1 for any position P;.

Let C be a coin of maximum weight in P;_;. If the transition from
P;_1 to P; is caused by b, then d;(C) = d; _1(C) (because the
relative location of the coins does not change) and

mi(C) = mij_1(C) — 1 if mj_1(C) > 0, otherwise m;(C) = n—1.
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11. Properties of the Weight Function

In the final position only the golden coin G remains, whence the
weight of P, is the weight of G. Clearly,

wg(G, P;) = mi(G) < n—1 for any position P;.

Let C be a coin of maximum weight in P;_;. If the transition from
P;_1 to P; is caused by b, then d;(C) = d; _1(C) (because the
relative location of the coins does not change) and

mi(C) = mij_1(C) — 1 if mj_1(C) > 0, otherwise m;(C) = n—1.
We see that

wg(P;i) > wg(C,P;) =n-di(C) + mi(C) >
n- d,'_1(C) T m,-_1(C) —1= Wg(C, P,'_l) —1= Wg(P,'_l) — 1.
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12. Properties of the Weight Function

Suppose the transition from P;_; to P; is caused by a. If
S,'_1(C) # 0, then m,-(C) = m,-_1(C) and d,'(C) = ,'_1(C) if
si—1(G) # 0, otherwise d;(C) = d;_1(C) + 1.
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12. Properties of the Weight Function

Suppose the transition from P;_; to P; is caused by a. If

S,'_1(C) # 0, then m,-(C) = m,-_1(C) and d,'(C) = ,'_1(C) if
si—1(G) # 0, otherwise di(C) = di_1(C) + 1. Thus, the transition
from P;_1 to P; cannot decrease the weight.
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12. Properties of the Weight Function

Suppose the transition from P;_; to P; is caused by a. If

S,'_1(C) # 0, then m,-(C) = m,-_1(C) and d,'(C) = ,'_1(C) if
si—1(G) # 0, otherwise di(C) = di_1(C) + 1. Thus, the transition
from P;_1 to P; cannot decrease the weight.

Assume that C covers 0 in P;_1. Then in P; the state 1 holds a
coin C' (which may or may not coincide with C). In P;_; the
golden coin G does not cover 0 whence it does not move and
di(C") = di_1(C) — 1.
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12. Properties of the Weight Function

Suppose the transition from P;_; to P; is caused by a. If

S,'_1(C) # 0, then m,-(C) = m,-_1(C) and d,'(C) = ,'_1(C) if
si—1(G) # 0, otherwise di(C) = di_1(C) + 1. Thus, the transition
from P;_1 to P; cannot decrease the weight.

Assume that C covers 0 in P;_;. Then in P; the state 1 holds a
coin C' (which may or may not coincide with C). In P;_; the
golden coin G does not cover 0 whence it does not move and
di(C") = di—1(C) — 1. Therefore

wg(P;) > wg(C', P;) = n-d;(C")+n—1=n-(di_1(C)—1)+n—1
=n-di—1(C) — 1 =wg(C,Pi_1) — 1 = wg(Pi_1) — 1.
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13. More on Games

Assume that there are two players: Alice (Synchronizer) and Bob
(Desynchronizer) whose moves alternate. Alice (who pays first)
wants to synchronize the given automaton, Bob aims to make her
task as hard as possible.
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13. More on Games

Assume that there are two players: Alice (Synchronizer) and Bob
(Desynchronizer) whose moves alternate. Alice (who pays first)
wants to synchronize the given automaton, Bob aims to make her
task as hard as possible.

e Bob can win on a synchronizing automaton (for instance, he
wins on %,).
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13. More on Games

Assume that there are two players: Alice (Synchronizer) and Bob
(Desynchronizer) whose moves alternate. Alice (who pays first)
wants to synchronize the given automaton, Bob aims to make her
task as hard as possible.

e Bob can win on a synchronizing automaton (for instance, he
wins on %,).

e Given & = (Q, X, ), one can decide who wins in
O(|Q|? - |Z]) time.
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13. More on Games

Assume that there are two players: Alice (Synchronizer) and Bob
(Desynchronizer) whose moves alternate. Alice (who pays first)
wants to synchronize the given automaton, Bob aims to make her
task as hard as possible.

e Bob can win on a synchronizing automaton (for instance, he
wins on %,).

e Given & = (Q, X, ), one can decide who wins in
O(|Q|? - |Z]) time.
o If Alice wins, she can win in O(|Q|3|) moves.
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13. More on Games

Assume that there are two players: Alice (Synchronizer) and Bob
(Desynchronizer) whose moves alternate. Alice (who pays first)
wants to synchronize the given automaton, Bob aims to make her
task as hard as possible.

e Bob can win on a synchronizing automaton (for instance, he
wins on %,).

e Given & = (Q, X, ), one can decide who wins in

O(|QJ? - |Z]) time.

e If Alice wins, she can win in O(|Q|3|) moves.

e For every synchronizing automaton & = (Q, L, J), one can
construct an automaton & with 2| Q| states such that Alice
wins on Z but the minimum number of moves she needs to
win is no less than the minimum length of reset words for <.
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14. The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n =2,3,..., yields the inequality
C(n) > (n—1)2
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14. The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n =2,3,..., yields the inequality
C(n) > (n—1)2

The Cerny conjecture is the claim that in fact the equality

C(n) = (n—1)? holds true.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



14. The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n =2,3,..., yields the inequality
C(n) > (n—1)2

The Cerny conjecture is the claim that in fact the equality

C(n) = (n—1)? holds true. This simply looking conjecture is
arguably the most longstanding open problem in the combinatorial
theory of finite automata.
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14. The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n =2,3,..., yields the inequality
C(n) > (n—1)2

The Cerny conjecture is the claim that in fact the equality

C(n) = (n—1)? holds true. This simply looking conjecture is
arguably the most longstanding open problem in the combinatorial
theory of finite automata. Everything we know about the
conjecture in general can be summarized in one line:

n3—n

(n—1)> < C(n) <
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15. Why it is hard?

Why is the problem so surprisingly difficult?
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15. Why it is hard?

Why is the problem so surprisingly difficult?

We saw two reasons:
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15. Why it is hard?

Why is the problem so surprisingly difficult?
We saw two reasons:

e non-locality: prefixes of optimal solutions need not be optimal
(that is why the greedy algorithm fails);
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15. Why it is hard?

Why is the problem so surprisingly difficult?

We saw two reasons:

e non-locality: prefixes of optimal solutions need not be optimal
(that is why the greedy algorithm fails);

e combinatorics of finite sets is encoded in the problem.
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15. Why it is hard?

Why is the problem so surprisingly difficult?

We saw two reasons:

e non-locality: prefixes of optimal solutions need not be optimal
(that is why the greedy algorithm fails);

e combinatorics of finite sets is encoded in the problem.

Yet another reason: “slowly” synchronizing automata turn out to
be extremely rare.
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15. Why it is hard?

Why is the problem so surprisingly difficult?

We saw two reasons:

e non-locality: prefixes of optimal solutions need not be optimal
(that is why the greedy algorithm fails);

e combinatorics of finite sets is encoded in the problem.

Yet another reason: “slowly” synchronizing automata turn out to
be extremely rare. The only known infinite series of n-state
synchronizing automata with shortest reset words of length

(n —1)? is the Cerny series €, n =2,3,..., with a few sporadic
examples for n < 6.
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16. 20-State Experiment

10000

8000

G000

4000

2000 4

®— N=100000

gy e 14,2010

Mikhail Volkov Synchronizing Finite Automata



17. 30-State Experiment
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18. Random Automata

A (partial) explanation of these experimental observations:
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18. Random Automata

A (partial) explanation of these experimental observations: if Q is
an n-set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is a constant map (Peter
Higgins, The range order of a product of i transformations from a
finite full transformation semigroup, Semigroup Forum, 37 (1988)
31-36).
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18. Random Automata

A (partial) explanation of these experimental observations: if Q is
an n-set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is a constant map (Peter
Higgins, The range order of a product of i transformations from a
finite full transformation semigroup, Semigroup Forum, 37 (1988)
31-36). In automata-theoretic terms, this fact means that a
randomly chosen DFA with n states and a sufficiently large input
alphabet tends to be synchronizing and is reset by any word of
length > 2n.
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18. Random Automata

A (partial) explanation of these experimental observations: if Q is
an n-set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is a constant map (Peter
Higgins, The range order of a product of i transformations from a
finite full transformation semigroup, Semigroup Forum, 37 (1988)
31-36). In automata-theoretic terms, this fact means that a
randomly chosen DFA with n states and a sufficiently large input
alphabet tends to be synchronizing and is reset by any word of
length > 2n.

Thus, “slowly” synchronizing automata cannot be discovered via a
random sampling.
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19. Sporadic Examples: n = 2

A synchronizing automaton & = (Q, L, d) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



19. Sporadic Examples: n = 2

A synchronizing automaton & = (Q, L, d) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %5 is not.
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19. Sporadic Examples: n = 2

A synchronizing automaton & = (Q, L, d) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %5 is not.

A synchronizing automaton with n states reaches the Cerny bound
if the minimum length of its reset words is (n — 1).
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19. Sporadic Examples: n = 2

A synchronizing automaton & = (Q, L, d) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %5 is not.

A synchronizing automaton with n states reaches the Cerny bound
if the minimum length of its reset words is (n — 1)?. We present
here all known proper synchronizing automata beyond the Cerny
series €,, n = 3,4, ..., that reach the Cerny bound.
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19. Sporadic Examples: n = 2

A synchronizing automaton & = (Q, L, d) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %5 is not.

A synchronizing automaton with n states reaches the Cerny bound
if the minimum length of its reset words is (n — 1)?. We present
here all known proper synchronizing automata beyond the Cerny
series €,, n = 3,4, ..., that reach the Cerny bound.

For the sake of completeness, we start with n = 2:

a
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20. Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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20. Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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20. Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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20. Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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21. Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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21. Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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21. Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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21. Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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22. Roman's Automaton

A proper 5-state automaton reaching the Cerny bound has been
recently discovered by Adam Roman.
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22. Roman's Automaton

A proper 5-state automaton reaching the Cerny bound has been
recently discovered by Adam Roman.
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23. Kari’'s Automaton

The last in our list and the most remarkable example was
published in 2001 by Jarkko Kari (A counter example to a

conjecture concerning synchronizing words in finite automata,
EATCS Bull., 73, 146).
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23. Kari’'s Automaton

The last in our list and the most remarkable example was
published in 2001 by Jarkko Kari (A counter example to a

conjecture concerning synchronizing words in finite automata,
EATCS Bull., 73, 146).
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24. Pin's Conjecture

Kari's automaton % has refuted several conjectures.
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24. Pin's Conjecture

Kari's automaton % has refuted several conjectures.

The most well known of them was suggested by Jean-Eric Pin in
1978. Pin conjectured that if an automaton &7 = (Q, X, §) with n
states admits a word w € £* such that |Q.w| =k, 1 < k <n,
then &/ possesses a word of length at most (n — k)? with the same

property.
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24. Pin's Conjecture

Kari's automaton % has refuted several conjectures.

The most well known of them was suggested by Jean-Eric Pin in
1978. Pin conjectured that if an automaton &7 = (Q, X, §) with n
states admits a word w € £* such that |Q.w| =k, 1 < k <n,
then &/ possesses a word of length at most (n — k)? with the same
property. (The Cerny conjecture corresponds to the case k = 1.)
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24. Pin's Conjecture

Kari's automaton % has refuted several conjectures.

The most well known of them was suggested by Jean-Eric Pin in
1978. Pin conjectured that if an automaton &7 = (Q, X, §) with n
states admits a word w € £* such that |Q.w| =k, 1 < k <n,
then &/ possesses a word of length at most (n — k)? with the same
property. (The Cerny conjecture corresponds to the case k = 1.)

However, in .#; there is no word w of length 16 = (6 — 2)? such
that |Q.w| = 2.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



25. Rank Conjecture

The rank of a DFA & = (Q, L, d) is the minimum cardinality of
the sets Q. w where w runs over ¥*.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



25. Rank Conjecture

The rank of a DFA & = (Q, L, d) is the minimum cardinality of
the sets Q. w where w runs over X*. This is the minimum score
that can be achieved in the solitaire game on the automaton .

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



25. Rank Conjecture

The rank of a DFA & = (Q, L, d) is the minimum cardinality of
the sets Q. w where w runs over X*. This is the minimum score
that can be achieved in the solitaire game on the automaton .
Synchronizing automata are precisely those of rank 1.
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25. Rank Conjecture

The rank of a DFA & = (Q, L, d) is the minimum cardinality of
the sets Q. w where w runs over X*. This is the minimum score
that can be achieved in the solitaire game on the automaton .
Synchronizing automata are precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture:
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25. Rank Conjecture

The rank of a DFA & = (Q, L, d) is the minimum cardinality of
the sets Q. w where w runs over X*. This is the minimum score
that can be achieved in the solitaire game on the automaton .
Synchronizing automata are precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture: if an automaton & = (Q, X, ) with n
states has rank k, then there exists a word w € ¥* of length at
most (n — k)? such that |Q.w| = k.
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25. Rank Conjecture

The rank of a DFA & = (Q, L, d) is the minimum cardinality of
the sets Q. w where w runs over X*. This is the minimum score
that can be achieved in the solitaire game on the automaton .
Synchronizing automata are precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture: if an automaton & = (Q, X, ) with n
states has rank k, then there exists a word w € ¥* of length at
most (n — k)? such that |Q.w| = k.

Again, the Cerny conjecture corresponds to the case k = 1.
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26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!
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26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!
In the solitaire game on %5, no sequence of 16 moves removes 4
coins.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!

In the solitaire game on %5, no sequence of 16 moves removes 4
coins. However, 4 is not the maximum number of tokens that can
be removed!
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26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!

In the solitaire game on %5, no sequence of 16 moves removes 4
coins. However, 4 is not the maximum number of tokens that can
be removed! One can show that 5 states can be freed by a
sequence of 25 moves — in full accordance with the rank

conjecture.
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26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!

In the solitaire game on %5, no sequence of 16 moves removes 4
coins. However, 4 is not the maximum number of tokens that can
be removed! One can show that 5 states can be freed by a
sequence of 25 moves — in full accordance with the rank

conjecture.

Yet another hope killed by Kari's example is the extensibility
conjecture.
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26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!

In the solitaire game on %5, no sequence of 16 moves removes 4
coins. However, 4 is not the maximum number of tokens that can
be removed! One can show that 5 states can be freed by a
sequence of 25 moves — in full accordance with the rank
conjecture.

Yet another hope killed by Kari's example is the extensibility
conjecture. For & = (Q, %, 0), a subset P C Q is extensible if
P = R.w for some w € * of length at most n = |Q| and some
R C Q with |R| > |P|.
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26. Extensibility Conjecture

Kari’s automaton does not refute the rank conjecture!

In the solitaire game on %5, no sequence of 16 moves removes 4
coins. However, 4 is not the maximum number of tokens that can
be removed! One can show that 5 states can be freed by a
sequence of 25 moves — in full accordance with the rank
conjecture.

Yet another hope killed by Kari's example is the extensibility
conjecture. For & = (Q, %, 0), a subset P C Q is extensible if
P = R.w for some w € * of length at most n = |Q| and some
R C Q with |R| > |P|. It was conjectured that in synchronizing
automata every proper non-singleton subset is extensible.
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28. Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.
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28. Extensibility

Observe that the extensibility conjecture implies the Cerny

conjecture.
Indeed, if & = (Q, X, 0d) is synchronizing, then some letter a €
should sent two states g, g’ € Q to the same state p.
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28. Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.

Indeed, if & = (Q, X, 0d) is synchronizing, then some letter a €
should sent two states g, g’ € Q to the same state p. Let

Py ={q,q'} and, for i > 0, let P; be such that |P;| > |P; 1| and
Pi_1 = P;j. w; for some word w; of length < n.
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28. Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.

Indeed, if & = (Q, X, 0d) is synchronizing, then some letter a €
should sent two states g, g’ € Q to the same state p. Let

Py ={q,q'} and, for i > 0, let P; be such that |P;| > |P; 1| and
Pi_1 = P;j. w; for some word w; of length < n. Then in at most
n — 2 steps the sequence Py, P1, P>, ... reaches Q and

Q. Wn_1Wp_2---wia = {p},

that is, wp_1wp_o---wja is a reset word.
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28. Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.

Indeed, if & = (Q, X, 0d) is synchronizing, then some letter a €
should sent two states g, g’ € Q to the same state p. Let

Py ={q,q'} and, for i > 0, let P; be such that |P;| > |P; 1| and
Pi_1 = P;j. w; for some word w; of length < n. Then in at most
n — 2 steps the sequence Py, P1, P>, ... reaches Q and

Q. Wn_1Wp_2---wia = {p},

that is, w,_1wn o---wiais a reset word. The length of this reset
word is at most n(n —2) +1 = (n—1)2.
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29. Example
a

0123 —2

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



29. Example

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



29. Example

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



29. Example
a

0123 —2
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30. Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:
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30. Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in French]).
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30. Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in French]).

e Jarkko Kari's result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223-232.)
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30. Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in French]).

e Jarkko Kari's result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223-232.)

e Benjamin Steinberg’s result for automata in which a letter labels
only one cycle (one-cluster automata) and this cycle is of prime
length.
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31. Extensibility vs Kari's Example

However, in % there exists a 2-subset that cannot be extended to
a larger subset by any word of length 6 (and even by any word of
length 7).
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31. Extensibility vs Kari's Example

However, in % there exists a 2-subset that cannot be extended to
a larger subset by any word of length 6 (and even by any word of

length 7).
Thus, the extensibility conjecture fails, and the approach based on

it cannot prove the Cerny conjecture in general.

CSClub, St Petersburg, November 14, 2010

Mikhail Volkov Synchronizing Finite Automata



31. Extensibility vs Kari's Example

However, in % there exists a 2-subset that cannot be extended to
a larger subset by any word of length 6 (and even by any word of
length 7).

Thus, the extensibility conjecture fails, and the approach based on
it cannot prove the Cerny conjecture in general.

However, studying the extensibility phenomenon in synchronizing
automata appears to be worthwhile: if there is a linear bound on
the minimum length of words extending non-singleton proper
subsets of a synchronizing automaton, then there is a quadratic
bound on the minimum length of reset words for the automaton.
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32. a-Extensibility

Let a be a positive real number. An automaton & = (Q, X, J) is
a-extensible if for any subset P C Q there are w € ¥* of length at
most a|Q| and R C Q with |R| > |P| such that P =R . w.
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32. a-Extensibility

Let a be a positive real number. An automaton & = (Q, X, J) is
a-extensible if for any subset P C @ there are w € L* of length at
most a|Q| and R C Q with |R| > |P| such that P =R . w.

An a-extensible automaton with n states has a reset word of

length an? + O(n).
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32. a-Extensibility

Let a be a positive real number. An automaton & = (Q, X, J) is
a-extensible if for any subset P C @ there are w € L* of length at
most a|Q| and R C Q with |R| > |P| such that P =R . w.

An a-extensible automaton with n states has a reset word of
length an? + O(n).

Several important classes of synchronizing automata are known to
be 2-extensible, for instance, one-cluster automata (Marie-Pierre
Béal, Mikhail Berlinkov, Dominique Perrin, in print).

On the other hand, for any a < 2 Berlinkov (DLT 2010) has
constructed a synchronizing automaton that is not a-extensible.
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33. Berlinkov's Series
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33. Berlinkov's Series

For n > ﬁ this automaton is not a-extensible.
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33. Berlinkov's Series

For n > ﬁ this automaton is not a-extensible.

Open problems: to investigate the worst-case/average-case
behaviour of the greedy extension algorithm.
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