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Deterministic finite automata (DFA): & = (Q, X, 0).
o @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function
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Deterministic finite automata (DFA): & = (Q, X, 0).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.
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Deterministic finite automata (DFA): & = (Q, X, 0).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.
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Deterministic finite automata (DFA): & = (Q, X, 0).

e @ the state set

e Y the input alphabet

e : Q@ %X X — Q the transition function

& is called synchronizing if there exists a word w € £* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all q,q" € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.

Any w with this property is a reset word for <.
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2. Example
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2. Example

A reset word is abbbabbba. In fact, we have verified that this is
the shortest reset word for this automaton.
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area.
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area.

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states.
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area.

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. In terms of
this function, our current knowledge can be summarized in one line:
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area.

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. In terms of
this function, our current knowledge can be summarized in one line:

(Cerny, 1964) (n—1)? < C(n)
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area.

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. In terms of
this function, our current knowledge can be summarized in one line:

3

n- —n

(Cerny, 1964) (n—1)%> < C(n) < (Pin—Frankl, 1983).
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3. Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area.

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. In terms of
this function, our current knowledge can be summarized in one line:

3

n- —n

(Cerny, 1964) (n—1)%> < C(n) < (Pin—Frankl, 1983).

The Cerny conjecture thus claims that in fact C(n) = (n — 1)
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4. Recent Discovery

Vladimir Gusev, a PhD student of mine, has performed a massive
series of experiments searching exhaustively through automata
with a modest number of states in order to find new examples of

“slowly” synchronizing automata.
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4. Recent Discovery

Vladimir Gusev, a PhD student of mine, has performed a massive
series of experiments searching exhaustively through automata
with a modest number of states in order to find new examples of
“slowly” synchronizing automata. He has used an approach due to
Marco Almeida, Nelma Moreira and Rogério Reis, Enumeration
and generation with a string automata representation, Theor.
Comput. Sci., 387 (2007) 93-102.
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5. Second Gap

The next tables present the distribution of non-isomorphic
synchronizing automata with 8 and 9 states and 2 letters with
respect to the minimum length of their reset words.
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5. Second Gap

The next tables present the distribution of non-isomorphic
synchronizing automata with 8 and 9 states and 2 letters with
respect to the minimum length of their reset words.

8 states:
Reset word length | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 |
#ofautomata | 1 [0 [0 [0 |0 [1]1[3]1]5 ]
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5. Second Gap

The next tables present the distribution of non-isomorphic
synchronizing automata with 8 and 9 states and 2 letters with
respect to the minimum length of their reset words.

8 states:
Reset word length | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40

#ofautomata | 1 | O | O | O | O |1 |1 |3 ]|1]|65

O states:
Reset word length | 64 | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55

#ofautomata | 1 | 0O | O | O[O | O |1 |2 |30

Reset word length | 54 | 53 | 52 | 51
#ofautomata | 0 | O | 4 | 4
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6. Advantage of Being Old

Thus, the pattern is:

(n—1)? the first gap the “island” the second gap
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6. Advantage of Being Old

Thus, the pattern is:
(n—1)? the first gap the “island” the second gap

The second gap first appears at 9 states and grows rather regularly
with the number of states. The size of the island depends only on
the parity of the number of states.
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6. Advantage of Being Old

Thus, the pattern is:
(n—1)? the first gap the “island” the second gap

The second gap first appears at 9 states and grows rather regularly
with the number of states. The size of the island depends only on

the parity of the number of states.

The very same pattern appears in the distribution of exponents of

non-negative matrices.
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7. Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent

of A, denoted exp A.
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7. Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one has expA < n?>—-2n+2=(n-1)>+1,

and this bound is tight.
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7. Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one has expA < n?>—-2n+2=(n-1)>+1,

and this bound is tight. Possible exponents of n x n-matrices were
intensively studied in the 1960s, and it was discovered that two
extreme values are each attained by a unique matrix, then there is
a gap followed by an island followed by another gap.
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7. Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one has expA < n?>—-2n+2=(n-1)>+1,

and this bound is tight. Possible exponents of n x n-matrices were
intensively studied in the 1960s, and it was discovered that two
extreme values are each attained by a unique matrix, then there is
a gap followed by an island followed by another gap. The sizes of
the gaps and of the island perfectly match the sizes of the gaps
and of the islands in possible lengths of shortest reset words for
synchronizing automata with n steps — basically one has the same
picture shifted by 1.
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7. Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one has expA < n?>—-2n+2=(n-1)>+1,

and this bound is tight. Possible exponents of n x n-matrices were
intensively studied in the 1960s, and it was discovered that two
extreme values are each attained by a unique matrix, then there is
a gap followed by an island followed by another gap. The sizes of
the gaps and of the island perfectly match the sizes of the gaps
and of the islands in possible lengths of shortest reset words for
synchronizing automata with n steps — basically one has the same
picture shifted by 1. Clearly, this cannot be a mere coincidence.
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8. Digraphs and Matrices

A directed graph (digraph) is a pair D = (V, E).
e V set of vertices
e E C V x V set of edges
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8. Digraphs and Matrices

A directed graph (digraph) is a pair D = (V, E).

e V set of vertices

e E C V x V set of edges

This definition allows loops but excludes multiple edges.
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8. Digraphs and Matrices

A directed graph (digraph) is a pair D = (V, E).

e V set of vertices

e E C V x V set of edges

This definition allows loops but excludes multiple edges.

The matrix of a digraph D = (V/, E) is just the incidence matrix of
the edge relation, that is, a V X V-matrix whose entry in the row
v and the column v’ is 1 if (v, v’) € E and 0 otherwise.

CSClub, St Petersburg, November 21, 2010

Mikhail Volkov Synchronizing Finite Automata



9. Digraphs and Matrices

For instance, the matrix of the digraph

Oure®
@O—0O
@

(with respect to the chosen numbering of its vertices) is (

—HooH
OO
OO
o~oo
N———

CSClub, St Petersburg, November 21, 2010

Mikhail Volkov Synchronizing Finite Automata



9. Digraphs and Matrices

For instance, the matrix of the digraph

Oure®
@O—0O
) 1

100
(with respect to the chosen numbering of its vertices) is (8 o ‘1))
1000

Conversely, given an n X n-matrix P = (p;;) with non-negative real
entries, we assign to it a digraph D(P) on the set {1,2,...,n} as
follows: (i,/) is an edge of D(P) if and only if p; > 0.
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9. Digraphs and Matrices

For instance, the matrix of the digraph

e
@O—0O
) 1

100
(with respect to the chosen numbering of its vertices) is <§ é (%) g).

Conversely, given an n X n-matrix P = (p;;) with non-negative real
entries, we assign to it a digraph D(P) on the set {1,2,...,n} as

follows: (i,/) is an edge of D(P) if and only if p; > 0.

This ‘two-way’ correspondence allows us to reformulate in terms of
digraphs several important notions and results which originated in

the classical Perron—Frobenius theory of non-negative matrices.
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10. Digraphs and Colorings

Informally, by a coloring of a digraph we mean assigning labels
from an alphabet ¥ to edges such that the digraph labelled this
way becomes a DFA.

By the underlying digraph of a DFA we mean the digraph obtained
by erasing letters and identifying multiple edges in the diagram of
the DFA.
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11. Example

A digraph and two of its colorings
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12. Primitive Digraphs

A digraph D is primitive if D is strongly connected and the greatest
common divisor of the lengths of all cycles in D is equal to 1.

A digraph D is primitive if and only if there exists t € N such that
for each pair of vertices there exists a path between them of length
exactly t. (This goes back to Frobenius’s theory of non-negative
matrices.)

The least t with this property is called the exponent of the digraph
D and is denoted by (D).
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13. Road Coloring

There are tight connections between the notion of a primitive
digraph and that of a synchronizing automaton:

1977, Adler, Goodwyn, Weiss:
Underlying digraphs of strongly connected synchronizing automata
are primitive.

Road Coloring Conjecture: Every primitive digraph admits a
synchronizing coloring.

Confirmed by Trahtman in 2007.

Is there a connection between numerical characteristics of these
notions: exponent and reset length?
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14. Exponents

We know a lot about exponents of digraphs.

1950, Wielandt:
The exponent of every primitive digraph on n vertices is not
greater than (n — 1)? + 1 and this bound is tight.

1964, Dulmage-Mendelsohn:

There is exactly one primitive digraph on n vertices with exponent
equal to (n — 1)? + 1 and exactly one primitive digraph on n
vertices with exponent equal to (n — 1)2.

If n > 4 is even, then there is no primitive digraph D on n vertices
such that n> —4n + 6 < y(D) < (n — 1)%.

If n> 3 is odd, then there is no primitive digraph D on n vertices
such that n> —3n+4 < (D) < (n— 1),
or n> —4n+6 < y(D) < n®> —3n+2.
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15. Experimental Results

Exponents of primitive digraphs with 9 vertices vs reset lengths of
2-letter strongly connected synchronizing automata with 9 states

N 65(64(63(62(61/60|59|58|57|56|55|54(53|52|51
# of primitive
digraphs 1|]1{0(0(0f0|0|1|1|2({0(0|0|0]|4
with exponent N
# of 2-letter

synchronizing
automata with
reset length N/

At MFCS 2006, Trahtman reported the first gap in the upper part
of the sequence of possible reset lengths.
The existence of the second gap have not been reported yet.
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16. Wielandt Automaton

The Wielandt automaton #;, has y(#,) = (n — 1)? + 1

r(#,) = n®> —3n+3
Using the inequality v(#,) < rl(#,) + n — 1,
one can obtain n?> —3n+ 2 < rl(#}).

Every digraph with large exponent produces slowly synchronizing
automata. CSClub, St Petersburg, November 21, 2010
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17. Hybrid Conjecture

W, possesses an essentially unique coloring.

In the general case, there can be a lot of colorings.

Problem: If a primitive digraph has n vertices, what is the
minimum reset length for its synchronizing colorings?

Conjecture: Every primitive digraph with n vertices has a
synchronizing coloring with reset length at most n®> — 3n + 3.

The graph #,, shows that this bound cannot be lowered.
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18. Further Automata

Colorings of digraph with exponent (n — 1)?

Left: The slowest automaton after &,.
Right: None of the letters act as a cyclic permutation.

However, not every slowly synchronizing automaton we discovered
can be obtained in such a way. CSClub, St Petersburg, November 21, 2010
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19. Cerny Automaton

A reduction from the Cerny automaton %, to #,.

% induces #,, by the actions of b and ¢ = ab.

Every shortest synchronizing word of %, transforms to
a synchronizing word of %, CSClub, St Petersburg, November 21, 2010
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20. Further Examples

All other automata from the ‘island’ can be explained via this
‘unlooping’ trick.

10000012300044

5 CSClub, St Petersburg, November 21, 2010
n°—3n+4
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21. Further Examples

10000012300044

n®>—3n+3 CSClub, St Petersburg, November 21, 2010
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22. Further Examples

10000012300044

5 CSClub, St Petersburg, November 21, 2010
n“—3n+ 3, nodd
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23. Further Examples

10000012300044
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24. Further Examples

10000012300044

5 CSClub, St Petersburg, November 21, 2010
n®—3n+2

Mikhail Volkov Synchronizing Finite Automata



25. Further Examples

10000012300044
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n?> —3n+2, nodd
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26. Conclusion

Main Contribution: Primitive digraphs with large exponent stand —
directly or via unlooping — behind all known slowly synchronizing
digraphs.

Future work:
Use this connection and the information of exponents of primitive
digraphs in order to progress towards a proof of Cerny’s conjecture.
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