
PART I
St. Petersburg, 2011

 FEDOR V. FOMIN

Parameterized Algorithms I

Classical complexity

A brief review:

I We usually aim for polynomial-time algorithms: the running
time is O(nc), where n is the input size.

I Classical polynomial-time algorithms: shortest path,
mathching, minimum spanning tree, 2SAT, convext hull,
planar drawing, linear programming, etc.

I It is unlikely that polynomial-time algorithms exist for
NP-hard problems.

Classical complexity

I Unfortunately, many problems of interest are NP-hard:
Hamiltonian cycle, 3-coloring, 3SAT, etc.

I We expect that these problems can be solved only in
exponential time (i.e., cn).

Can we say anything nontrivial about NP-hard problems?

Parameterized complexity

Main idea: Instead of expressing the running time as a function
T (n) of n, we express it as a function T (n, k) of the input size n
and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

Parameterized complexity

What can be the parameter k?

I The size k of the solution we are looking for.

I The maximum degree of the input graph.

I The diameter of the input graph.

I The length of clauses in the input Boolean formula.

I . . .

Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

enumeration: O(2kn2) algorithm exists No no(k) algorithm known

Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

enumeration: O(2kn2) algorithm exists No no(k) algorithm known

Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

enumeration: O(2kn2) algorithm exists No no(k) algorithm known

Bounded search tree method

Algorithm for Minimum Vertex Cover:

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2
height: ! k

Height of the search tree is ! k ⇒ number of leaves is ! 2k ⇒ complete search

requires 2k · poly steps.

Fixed Parameter Algorithms – p.5/98

Height of the search tree is ≤ k ⇒ number of leaves is ≤ 2k ⇒
complete search requires 2k · poly steps.

Exercise

Problem: Minimum Dominating Set
Input: Graph G, integer k
Question: Is it possible to cover

all vertices with k vertices?

Exercise

Problem: Minimum Dominating Set
Input: Graph G, integer k
Question: Is it possible to cover

all vertices with k vertices?

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function
that assigns an integer parameter k to each input instance x.

The parameter can be

I explicit in the input (for example, if the parameter is the
integer k appearing in the input (G, k) of Vertex Cover),
or

I implicit in the input (for example, if the parameter is the
diameter d of the input graph G).

Main definition:

A parameterized problem is fixed-parameter tractable
(FPT) if there is an f(k)nc time algorithm for some constant
c.

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function
that assigns an integer parameter k to each input instance x.

The parameter can be

I explicit in the input (for example, if the parameter is the
integer k appearing in the input (G, k) of Vertex Cover),
or

I implicit in the input (for example, if the parameter is the
diameter d of the input graph G).

Main definition:

A parameterized problem is fixed-parameter tractable
(FPT) if there is an f(k)nc time algorithm for some constant
c.

Fixed-parameter tractability

Example: Minimum Vertex Cover parameterized by the
required size k is FPT: we have seen that it can be solved in time
O(2k + n2).

Better algorithms are known: e.g, O(1.2832kk + k|V |).

Main goal of parameterized complexity: to find FPT problems.

FPT problems

Examples of NP-hard problems that are FPT:

I Finding a vertex cover of size k.

I Finding a path of length k.

I Finding k disjoint triangles.

I Drawing the graph in the plane with k edge crossings.

I Finding disjoint paths that connect k pairs of points.

I . . .

FPT algorithmic techniques

I Significant advances in the past 20 years or so (especially in
recent years).

I Powerful toolbox for designing FPT algorithms:

FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Fixed Parameter Algorithms – p.8/98

Books

Downey-Fellows: Parameterized Com-
plexity, Springer, 1999

Flum-Grohe: Parameterized Complexity
Theory, Springer, 2006

Niedermeier: Invitation to Fixed-
Parameter Algorithms, Oxford University
Press, 2006.

Goals of the course

I Demonstrate techniques that were successfully used in the
analysis of parameterized problems.

I Determine quickly if a problem is FPT.
I Design fast algorithms (improve the function f(k)).

Notes

This course and slides are based on
Dániel Marx’s lectures on parameterized
complexity
http://www.cs.bme.hu/~dmarx/

What is missing but worth to discuss

I Complexity:
I W-hierarchy, reductions,
I Exponential Time Hypothesis and lower bounds for FPT

algorithms
I ETH and parameterized complexity
I Polynomial Time Hierarchy and lower bounds on the sizes of

kernels

I Algorithms:
I Integer programming
I Meta theorems: First Order Logic, Finite Integer Index
I Multi-cut algorithms and Directed FVS

Notes

I Warning: The results presented for particular problems are
not necessarily the best known results or the most useful
approaches for these problems.

I Conventions:
I Unless noted otherwise, k is the parameter.
I O∗ notation: O∗(f(k)) means O(f(k) · nc) for some constant
c.

I Citations are mostly omitted (only for classical results).
I We gloss over the difference between decision and search

problems.

Kernelization

FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Fixed Parameter Algorithms – p.8/98

KERNELIZATION

Introduction and definition

Part I: Crown Decomposition

Part II: Sunflower Lemma

Kernelization

Definition: Kernelization is a polynomial-time transformation that
maps an instance (I, k) to an instance (I ′, k′) such that

I (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

I k′ ≤ k, and

I |I ′| ≤ f(k) for some function f(k).

Simple fact: If a problem has a kernelization algorithm, then it is
FPT.
Proof: Solve the instance (I ′, k′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f(k)nc algorithm for the problem.

I If f(k) ≤ n, then solve the instance in time f(k)nc ≤ nc+1,
and output a trivial yes- or no-instance.

I If n < f(k), then we are done: a kernel of size f(k) is
obtained.

Kernelization

Definition: Kernelization is a polynomial-time transformation that
maps an instance (I, k) to an instance (I ′, k′) such that

I (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

I k′ ≤ k, and

I |I ′| ≤ f(k) for some function f(k).

Simple fact: If a problem has a kernelization algorithm, then it is
FPT.
Proof: Solve the instance (I ′, k′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f(k)nc algorithm for the problem.

I If f(k) ≤ n, then solve the instance in time f(k)nc ≤ nc+1,
and output a trivial yes- or no-instance.

I If n < f(k), then we are done: a kernel of size f(k) is
obtained.

Kernelization

Definition: Kernelization is a polynomial-time transformation that
maps an instance (I, k) to an instance (I ′, k′) such that

I (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

I k′ ≤ k, and

I |I ′| ≤ f(k) for some function f(k).

Simple fact: If a problem has a kernelization algorithm, then it is
FPT.
Proof: Solve the instance (I ′, k′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f(k)nc algorithm for the problem.

I If f(k) ≤ n, then solve the instance in time f(k)nc ≤ nc+1,
and output a trivial yes- or no-instance.

I If n < f(k), then we are done: a kernel of size f(k) is
obtained.

Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show
that if none of the rules can be applied and the size of the instance
is still larger than f(k), then the answer is trivial.

Reduction rules for Vertex Cover instance (G, k):

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)
Rule 2: If d(v) > k ⇒ (G \ v, k − 1)

If neither Rule 1 nor Rule 2 can be applied:

I If |V (G)| > k(k + 1) ⇒ There is no solution (every vertex
should be the neighbor of at least one vertex of the cover).

I Otherwise, |V (G)| ≤ k(k + 1) and we have a k(k + 1) vertex
kernel.

Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show
that if none of the rules can be applied and the size of the instance
is still larger than f(k), then the answer is trivial.

Reduction rules for Vertex Cover instance (G, k):

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)
Rule 2: If d(v) > k ⇒ (G \ v, k − 1)

If neither Rule 1 nor Rule 2 can be applied:

I If |V (G)| > k(k + 1) ⇒ There is no solution (every vertex
should be the neighbor of at least one vertex of the cover).

I Otherwise, |V (G)| ≤ k(k + 1) and we have a k(k + 1) vertex
kernel.

Kernelization for Vertex Cover

Let us add a third rule:

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)
Rule 2: If d(v) > k ⇒ (G \ v, k − 1)
Rule 3: If d(v) = 1, then we can assume that its neighbor u is

in the
solution ⇒ (G \ (u ∪ v), k − 1).

If none of the rules can be applied, then every vertex has degree at
least 2.
⇒ |V (G)| ≤ |E(G)|

I If |E(G)| > k2 ⇒ There is no solution (each vertex of the
solution can cover at most k edges).

I Otherwise, |V (G)| ≤ |E(G)| ≤ k2 and we have a k2 vertex
kernel.

Kernelization for Vertex Cover

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u1 and u2 are
adjacent, then we can assume that u1, u2 are in the solution ⇒
(G \ {u1, u2, v}, k − 2).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u1 and u2 are adjacent, then we
can assume that u1, u2 are in the solution⇒ (G \ {u1, u2, v }, k − 2).

v

G

u1

u2

Fixed Parameter Algorithms – p.16/98

Kernelization for Vertex Cover

Rule 4b: If v has degree 2, then G′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G′, k − 1).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Fixed Parameter Algorithms – p.16/98

Kernelization for Vertex Cover

Rule 4b: If v has degree 2, then G′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G′, k − 1).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Fixed Parameter Algorithms – p.16/98

Correctness:

I Let S′ be a vertex cover of size k − 1 for G′.

I If u ∈ S ⇒ (S′ \u)∪{u1, u2} is a vertex cover of size k for G.

I If u 6∈ S ⇒ S′ ∪ v is a vertex cover of size k for G.

Kernelization for Vertex Cover
Rule 4b: If v has degree 2, then G′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G′, k − 1).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Fixed Parameter Algorithms – p.16/98

Correctness:

I Let S be a vertex cover of size k for G.
I If u1, u2 ∈ S ⇒ (S \ {u1, u2, v}) ∪ u is a vertex cover of size
k − 1 for G′.

I If exactly one of u1 and u2 is in S, then v ∈ S ⇒
(S \ {u1, u2, v}) ∪ u is a vertex cover of size k − 1 for G′.

I If u1, u2 6∈ S, then v ∈ S ⇒ (S \ v) is a vertex cover of size
k − 1 for G′.

Kernelization for Vertex Cover

Rule 4b: If v has degree 2, then G′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G′, k − 1).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Fixed Parameter Algorithms – p.16/98

Kernel size:

I If |E(G)| > k2 ⇒ There is no solution (each vertex of the
solution can cover at most k edges).

I Otherwise, |V (G)| ≤ 2|E(G)|/3 ≤ 2
3k

2 and we have a 2
3k

2

vertex kernel.

Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find
k lines that cover all the points.

Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find
k lines that cover all the points.

Note: We can assume that every line of the solution covers at
least 2 points, thus there are at most n2 candidate lines.

Reduction Rule:
If a candidate line covers a set S of more than k points ⇒
(P \ S, k − 1).

If this rule cannot be applied and there are still more than k2

points, then there is no solution ⇒ Kernel with at most k2 points.

Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find
k lines that cover all the points.

Note: We can assume that every line of the solution covers at
least 2 points, thus there are at most n2 candidate lines.

Reduction Rule:
If a candidate line covers a set S of more than k points ⇒
(P \ S, k − 1).

If this rule cannot be applied and there are still more than k2

points, then there is no solution ⇒ Kernel with at most k2 points.

Kernelization

I Kernelization can be thought of as a polynomial-time
preprocessing before attacking the problem with whatever
method we have. “It does no harm” to try kernelization.

I Some kernelizations use lots of simple reduction rules and
require a complicated analysis to bound the kernel size. . .

I . . . while other kernelizations are based on surprising nice
tricks (Next: Crown Reduction and the Sunflower Lemma).

I Possibility to prove lower bounds.

Crown Reduction

Crown Reduction

Definition: A crown decomposition is a partition C ∪H ∪B of
the vertices such that

I C is an independent set,

I there is no edge between C and
B,

I there is a matching between C
and H that covers H.

B

H

C

Crown Reduction

Definition: A crown decomposition is a partition C ∪H ∪B of
the vertices such that

I C is an independent set,

I there is no edge between C and
B,

I there is a matching between C
and H that covers H.

B

H

C

Crown rule for Vertex Cover:
The matching needs to be covered and we can assume that it is
covered by H (makes no sense to use vertices of C)

Crown Reduction

Definition: A crown decomposition is a partition C ∪H ∪B of
the vertices such that

I C is an independent set,

I there is no edge between C and
B,

I there is a matching between C
and H that covers H.

B

H

C

Crown rule for Vertex Cover:
The matching needs to be covered and we can assume that it is
covered by H (makes no sense to use vertices of C)
⇒ (G \ (H ∪ C), k − |H|).

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ No solution!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.

I ⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Vertex Cover.

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ No solution!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.

I ⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Vertex Cover.

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ No solution!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.

I ⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Vertex Cover.

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ No solution!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.

I ⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Vertex Cover.

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ No solution!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.

I ⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Vertex Cover.

Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Kőnig’s Theorem.

τ(G) : size of the minimum vertex cover
ν(G) : size of the maximum matching (independent set of

edges)

Theorem: [Kőnig, 1931] If G is bipartite, then

τ(G) = ν(G)

Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Find (greedily) a maximal matching; if
its size is at least k + 1, then we are
done. The rest of the graph is an
independent set I.

Find a maximum matching/minimum
vertex cover in the bipartite graph
between X and I.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its
size is at least k + 1, then we are done. The rest
of the graph is an independent set I .

IX

Fixed Parameter Algorithms – p.23/98

Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Find (greedily) a maximal matching; if
its size is at least k + 1, then we are
done. The rest of the graph is an
independent set I.

Find a maximum matching/minimum
vertex cover in the bipartite graph
between X and I.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its
size is at least k + 1, then we are done. The rest
of the graph is an independent set I .

Find a maximum matching/minimum vertex cover in
the bipartite graph between X and I .

I

X

Fixed Parameter Algorithms – p.23/98

Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover
contains at least one vertex of X
⇒ There is a crown decomposition.

Case 2: The minimum vertex cover
contains only vertices of I ⇒ It
contains every vertex of I
⇒ There are at most 2k + k vertices.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at least
one vertex of X
⇒ There is a crown decomposition.

C

HX

I

Fixed Parameter Algorithms – p.23/98

Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover
contains at least one vertex of X
⇒ There is a crown decomposition.

Case 2: The minimum vertex cover
contains only vertices of I ⇒ It
contains every vertex of I
⇒ There are at most 2k + k vertices.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at least
one vertex of X
⇒ There is a crown decomposition.

Case 2: The minimum vertex cover contains only
vertices of I ⇒ It contains every vertex of I
⇒ There are at most 2k + k vertices.

I

X

Fixed Parameter Algorithms – p.23/98

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as Saving k
Colors.

Task: Given a graph G and an integer k, find a vertex coloring
with |V (G)| − k colors.

Crown rule for Dual of Vertex Coloring:

Suppose there is a crown decomposition for the complement
graph G.

I C is a clique in G: each vertex
needs a distinct color.

I Because of the matching, it is
possible to color H using only these
|C| colors.

I These colors cannot be used for B.

I (G \ (H ∪ C), k − |H|)

DUAL OF VERTEX COLORING

Parameteric dual of k -COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for DUAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G .

C is a clique in G : each vertex needs a distinct

color.

Because of the matching, it is possible to color

H using only these |C | colors.

These colors cannot be used for B .

(G \ (H ∪ C), k − |H |)

B

C

H

Fixed Parameter Algorithms – p.24/98

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as Saving k
Colors.

Task: Given a graph G and an integer k, find a vertex coloring
with |V (G)| − k colors.

Crown rule for Dual of Vertex Coloring:

Suppose there is a crown decomposition for the complement
graph G.

I C is a clique in G: each vertex
needs a distinct color.

I Because of the matching, it is
possible to color H using only these
|C| colors.

I These colors cannot be used for B.

I (G \ (H ∪ C), k − |H|)

DUAL OF VERTEX COLORING

Parameteric dual of k -COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for DUAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G .

C is a clique in G : each vertex needs a distinct

color.

Because of the matching, it is possible to color

H using only these |C | colors.

These colors cannot be used for B .

(G \ (H ∪ C), k − |H |)

B

C

H

Fixed Parameter Algorithms – p.24/98

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as Saving k
Colors.

Task: Given a graph G and an integer k, find a vertex coloring
with |V (G)| − k colors.

Crown rule for Dual of Vertex Coloring:

Suppose there is a crown decomposition for the complement
graph G.

I C is a clique in G: each vertex
needs a distinct color.

I Because of the matching, it is
possible to color H using only these
|C| colors.

I These colors cannot be used for B.

I (G \ (H ∪ C), k − |H|)

DUAL OF VERTEX COLORING

Parameteric dual of k -COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for DUAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G .

C is a clique in G : each vertex needs a distinct

color.

Because of the matching, it is possible to color

H using only these |C | colors.

These colors cannot be used for B .

(G \ (H ∪ C), k − |H |)

B

C

H

Fixed Parameter Algorithms – p.24/98

Crown Reduction for Dual of Vertex Coloring

Use the key lemma for the complement G of G:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ YES: we can save k colors!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.
⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Dual of Vertex Coloring.

Sunflower Lemma

Sunflower lemma

Definition: Sets S1, S2, . . . , Sk form a sunflower if the sets
Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

Sunflower lemma

Definition: Sets S1, S2, ... , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petals
center

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than

(p − 1)d · d! and it contains only sets of size at most d , then the system contains a

sunflower with p petals. Furthermore, in this case such a sunflower can be found in

polynomial time.

Fixed Parameter Algorithms – p.27/98

Lemma: [Erdős and Rado, 1960] If the size of a set system is
greater than (p− 1)d · d! and it contains only sets of size at most d,
then the system contains a sunflower with p petals. Furthermore,
in this case such a sunflower can be found in polynomial time.

Sunflowers and d-Hitting Set

d-Hitting Set: Given a collection S of sets of size at most d
and an integer k, find a set S of k elements that intersects every
set of S.

Sunflower lemma

Definition: Sets S1, S2, ... , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petals
center

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than

(p − 1)d · d! and it contains only sets of size at most d , then the system contains a

sunflower with p petals. Furthermore, in this case such a sunflower can be found in

polynomial time.

Fixed Parameter Algorithms – p.27/98

Reduction Rule: If k + 1 sets form a sunflower, then remove
these sets from S and add the center C to S (S does not hit one
of the petals, thus it has to hit the center).

Note: if the center is empty (the sets are disjoint), then there is no
solution.
If the rule cannot be applied, then there are at most O(kd) sets.

Sunflowers and d-Hitting Set

d-Hitting Set: Given a collection S of sets of size at most d
and an integer k, find a set S of k elements that intersects every
set of S.

Sunflower lemma

Definition: Sets S1, S2, ... , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petals
center

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than

(p − 1)d · d! and it contains only sets of size at most d , then the system contains a

sunflower with p petals. Furthermore, in this case such a sunflower can be found in

polynomial time.

Fixed Parameter Algorithms – p.27/98

Reduction Rule (variant): Suppose more than k + 1 sets form a
sunflower.

I If the sets are disjoint ⇒ No solution.

I Otherwise, keep only k + 1 of the sets.

If the rule cannot be applied, then there are at most O(kd) sets.

Branching and bounded search trees
FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Fixed Parameter Algorithms – p.8/98

SEARCH TREE

Part I: Branching Vectors

Part II: Forbidden Subgraphs

Part III: Hereditary Properties

Bounded search tree method

Recall how we solved Minimum Vertex Cover:

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2
height: ! k

Height of the search tree is ! k ⇒ number of leaves is ! 2k ⇒ complete search

requires 2k · poly steps.

Fixed Parameter Algorithms – p.5/98

Bounded search tree method

We solve the problem by one or more branching rules.

Each rule makes a “guess” in such a way that at least one guess
will lead to a correct solution.

If we have branching rules such that

I each rule branches into at most b(k) directions, and

I applying a rule decreases the parameter,

then the problem can be solved in time O∗(b(k)k).

In many cases, this crude upper bound can be improved by better
analysis.

Vertex Cover

Improved algorithm for Vertex Cover.

I If every vertex has degree ≤ 2, then the problem can be
solved in polynomial time.

I Branching rule: If there is a vertex v with at least 3
neighbors, then

I either v is in the solution,

⇒ k decreases by 1

I or every neighbor of v is in the solution.

⇒ k decreases by at
least 3

Crude upper bound: O∗(2k), since the branching rule decreases the
parameter.

But it is somewhat better than that, since in the second branch,
the parameter decreases by at least 3.

Vertex Cover

Improved algorithm for Vertex Cover.

I If every vertex has degree ≤ 2, then the problem can be
solved in polynomial time.

I Branching rule: If there is a vertex v with at least 3
neighbors, then

I either v is in the solution, ⇒ k decreases by 1
I or every neighbor of v is in the solution. ⇒ k decreases by at

least 3

Crude upper bound: O∗(2k), since the branching rule decreases the
parameter.

But it is somewhat better than that, since in the second branch,
the parameter decreases by at least 3.

Better analysis
Let t(k) be the maximum number of leaves of the search tree if
the parameter is at most k (let t(k) = 1 for k ≤ 0).

t(k) ≤ t(k − 1) + t(k − 3)

There is a standard technique for bounding such functions
asymptotically.

We prove by induction that t(k) ≤ ck for some c > 1 as small as
possible.

What values of c are good? We need:

ck≥ck−1 + ck−3

c3 − c2 − 1 ≥ 0

We need to find the roots of the characteristic equation
c3 − c2 − 1 = 0.

Note: it is always true that such an equation has a unique positive
root.

Better analysis
Better analysis

x3 − x2 − 1

1.4656

21.510.50-0.5-1

3

2

1

0

-1

-2

-3

c = 1.4656 is a good value⇒ t(k) ! 1.4656k

⇒We have a O∗(1.4656k) algorithm for VERTEX COVER.

Fixed Parameter Algorithms – p.34/98

c = 1.4656 is a good value ⇒ t(k) ≤ 1.4656k

⇒ We have a O∗(1.4656k) algorithm for Vertex Cover.

Better analysis

We showed that if t(k) ≤ t(k − 1) + t(k − 3), then t(k) ≤ 1.4656k

holds.

Is this bound tight? There are two questions:

I Can the function t(k) be that large?
Yes (ignoring rounding problems).

I Can the search tree of the Vertex Cover algorithm be that
large?
Difficult question, hard to answer in general.

Branching vectors

The branching vector of our O∗(1.4656k) Vertex Cover
algoritm was (1, 3).

Example: Let us bound the search tree for the branching vector
(2, 5, 6, 6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value c > 1 has to satisfy:

ck ≥ ck−2 + ck−5 + 2ck−6 + 2ck−7

c7 − c5 − c2 − 2c− 2 ≥ 0

Unique positive root of the characteristic equation: 1.4483 ⇒
t(k) ≤ 1.4483k.

It is hard to compare branching vectors intuitively.

Branching vectors

Example: The roots for branching vector (i, j) (1 ≤ i, j ≤ 6).

t(k) ≤ t(k − i) + t(k − j)⇒ck ≥ ck−i + ck−j

cj − cj−i − 1 ≥ 0

We compute the unique positive root.

1 2 3 4 5 6

1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852

2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107

3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740

4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510

5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348

6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225

Forbidden subgraphs

Forbidden subgraphs

General problem class: Given a graph G and an integer k,
transform G with at most k modifications (add/remove
vertices/edges) into a graph having property P.

Example:
Triangle deletion: make the graph triangle-free by deleting at
most k vertices.

Branching algorithm:

I If the graph is triangle-free, then we are done.

I Branching rule: If there is a triangle v1v2v3, then at least one
of v1, v2, v3 has to be deleted ⇒ We branch into 3 directions.

Triangle deletion

Search tree:

TRIANGLE DELETION

Search tree:

height ! k + 1

v2

T

v1 v3

The search tree has at most 3k leaves and the work to be done is polynomial at
each step⇒ O∗(3k) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3k leaves.

Fixed Parameter Algorithms – p.40/98

The search tree has at most 3k leaves and the work to be done is
polynomial at each step ⇒ O∗(3k) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3k

leaves.

Hereditary properties

Definition: A graph property P is hereditary if for every G ∈ P
and induced subgraph G′ of G, we have G′ ∈ P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by
a (finite or infinite) set F of forbidden induced subgraphs:

G ∈ P ⇐⇒ ∀H ∈ F , H 6⊆ind G

Theorem: If P is hereditary and can be characterized by a finite
set F of forbidden induced subgraphs, then the graph modification
problems corresponding to P are FPT.

Hereditary properties

Definition: A graph property P is hereditary if for every G ∈ P
and induced subgraph G′ of G, we have G′ ∈ P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by
a (finite or infinite) set F of forbidden induced subgraphs:

G ∈ P ⇐⇒ ∀H ∈ F , H 6⊆ind G

Theorem: If P is hereditary and can be characterized by a finite
set F of forbidden induced subgraphs, then the graph modification
problems corresponding to P are FPT.

Hereditary properties

Theorem: If P is hereditary and can be characterized by a finite
set F of forbidden induced subgraphs, then the graph modification
problems corresponding to P are FPT.

Proof:

I Suppose that every graph in F has at most r vertices. Using
brute force, we can find in time O(nr) a forbidden subgraph
(if exists).

I If a forbidden subgraph exists, then we have to delete one of
the at most r vertices or add/delete one of the at most

(
r
2

)

edges
⇒ Branching factor is a constant c depending on F .

I The search tree has at most ck leaves and the work to be
done at each node is O(nr).

Cluster Editing

Task: Given a graph G and an integer k, add/remove at most k
edges such that every component is a clique in the resulting graph.

Cluster Editing

Task: Given a graph G and an integer k, add/remove at most k
edges such that every component is a clique in the resulting graph.

Property P: every component is a clique.

Forbidden induced subgraph:

O∗(3k) time algorithm.

Chordal Completion
Definition: A graph is chordal if it does not contain an induced
cycle of length greater than 3.

Chordal Completion: Given a graph G and an integer k, add
at most k edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle
chordal.
Proof: By induction. k = 3 is trivial.

CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k , add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Ck

Fixed Parameter Algorithms – p.44/98

Chordal Completion
Definition: A graph is chordal if it does not contain an induced
cycle of length greater than 3.

Chordal Completion: Given a graph G and an integer k, add
at most k edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle
chordal.
Proof: By induction. k = 3 is trivial.

CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k , add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Ck

Fixed Parameter Algorithms – p.44/98

Chordal Completion
Definition: A graph is chordal if it does not contain an induced
cycle of length greater than 3.

Chordal Completion: Given a graph G and an integer k, add
at most k edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle
chordal.
Proof: By induction. k = 3 is trivial.

CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k , add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Ck

Fixed Parameter Algorithms – p.44/98

Chordal Completion
Definition: A graph is chordal if it does not contain an induced
cycle of length greater than 3.

Chordal Completion: Given a graph G and an integer k, add
at most k edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle
chordal.
Proof: By induction. k = 3 is trivial.

CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k , add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Ck

Ck−x+2

Cx
Cx : x − 3 edges
Ck−x+2: k − x − 1 edges
Ck : (x−3)+(k−x−1)+1 = k−3

edges

Fixed Parameter Algorithms – p.44/98

Cx: x− 3 edges
Ck−x+2: k − x− 1 edges
Ck: (x−3)+(k−x−1)+
1 = k − 3 edges

Chordal Completion

Algorithm:

I Find an induced cycle C of length at least 4 (can be done in
polynomial time).

I If no such cycle exists ⇒ Done!

I If C has more than k + 3 vertices ⇒ No solution!

I Otherwise, one of the
(|C|

2

)
− |C| ≤ (k + 3)(k + 2)/2− k = O(k2)

missing edges has to be added ⇒ Branch!

Size of the search tree is kO(k).

Chordal Completion – more efficiently

Definition: Triangulation of a cycle.

CHORDAL COMPLETION – more efficiently

Definition: Triangulation of a cycle.

Ck

Lemma: Every chordal supergraph of a cycle C contains a triangulation of the
cycle C .

Lemma: The number of ways a cycle of length k can be triangulated is exactly the
(k − 2)-nd Catalan number

Ck−2 =
1

k − 1

(
2(k − 2)

k − 2

)
! 4k−3.

Fixed Parameter Algorithms – p.46/98

Lemma: Every chordal supergraph of a cycle C contains a
triangulation of the cycle C.

Lemma: The number of ways a cycle of length k can be
triangulated is exactly the (k − 2)-nd Catalan number

Ck−2 =
1

k − 1

(
2(k − 2)
k − 2

)
≤ 4k−3.

Chordal Completion – more efficiently

Algorithm:

I Find an induced cycle C of length at least 4 (can be done in
polynomial time).

I If no such cycle exists ⇒ Done!

I If C has more than k + 3 vertices ⇒ No solution!

I Otherwise, one of the ≤ 4|C|−3 triangulations has to be in the
solution ⇒ Branch!

Claim: Search tree has at most Tk = 4k leaves.
Proof: By induction. Number of leaves is at most

Tk ≤ 4|C|−3 · Tk−(|C|−3) ≤ 4|C|−3 · 4k−(|C|−3) = 4k.

Iterative compression
FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Fixed Parameter Algorithms – p.8/98

Iterative compression

I A surprising small, but very powerful trick.

I Most useful for deletion problems: delete k things to achieve
some property.

I Demonstration: Odd Cycle Transversal aka Bipartite
Deletion aka Graph Bipartization: Given a graph G
and an integer k, delete k vertices to make the graph bipartite.

I Forbidden induced subgraphs: odd cycles. There is no bound
on the size of odd cycles.

Bipartite Deletion

Solution based on iterative compression:

I Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G),
and an integer k, find a set S of at most k vertices
such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

I Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1
vertices such that G \ S′ is bipartite, find a set S of
k vertices such that G \ S is bipartite.

I Step 3:
Apply the magic of iterative compression. . .

Bipartite Deletion

Solution based on iterative compression:

I Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G),
and an integer k, find a set S of at most k vertices
such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

I Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1
vertices such that G \ S′ is bipartite, find a set S of
k vertices such that G \ S is bipartite.

I Step 3:
Apply the magic of iterative compression. . .

Bipartite Deletion

Solution based on iterative compression:

I Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G),
and an integer k, find a set S of at most k vertices
such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

I Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1
vertices such that G \ S′ is bipartite, find a set S of
k vertices such that G \ S is bipartite.

I Step 3:
Apply the magic of iterative compression. . .

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer
k, find a set S of at most k vertices such that G \ S has a
2-coloring where B \ S is black and W \ S is white.

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find a set S of
at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

B

W

Fixed Parameter Algorithms – p.51/98

Find an arbitrary 2-coloring (B0,W0) of G.

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer
k, find a set S of at most k vertices such that G \ S has a
2-coloring where B \ S is black and W \ S is white.

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find a set S of
at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

W0

B

W

B0

Find an arbitrary 2-coloring (B0,W0) of G .

Fixed Parameter Algorithms – p.51/98

Find an arbitrary 2-coloring (B0,W0) of G.

Step 1: The annotated problem
Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer
k, find a set S of at most k vertices such that G \ S has a
2-coloring where B \ S is black and W \ S is white.

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find a set S of
at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

W

W0

B

B0

C

C

Find an arbitrary 2-coloring (B0,W0) of G .
C := (B0 ∩W) ∪ (W0 ∩ B) should change color, while R := (B0 ∩ B) ∪ (W0 ∩W)

should remain the same color.

Fixed Parameter Algorithms – p.51/98

Find an arbitrary 2-coloring (B0,W0) of G.
C := (B0 ∩W) ∪ (W0 ∩B) should change color, while
R := (B0 ∩B) ∪ (W0 ∩W) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S
separates C and R, i.e., no component of G \ S contains vertices
from both C \ S and R \ S.

Step 1: The annotated problem
Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer
k, find a set S of at most k vertices such that G \ S has a
2-coloring where B \ S is black and W \ S is white.

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find a set S of
at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

W

B0 W0

B

C

CR

R

Find an arbitrary 2-coloring (B0,W0) of G .
C := (B0 ∩W) ∪ (W0 ∩ B) should change color, while R := (B0 ∩ B) ∪ (W0 ∩W)

should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C and R , i.e.,
no component of G \ S contains vertices from both C \ S and R \ S .

Fixed Parameter Algorithms – p.51/98

Find an arbitrary 2-coloring (B0,W0) of G.
C := (B0 ∩W) ∪ (W0 ∩B) should change color, while
R := (B0 ∩B) ∪ (W0 ∩W) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S
separates C and R, i.e., no component of G \ S contains vertices
from both C \ S and R \ S.

Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S
separates C and R, i.e., no component of G \ S contains vertices
from both C \ S and R \ S.

Proof:
⇒ In a 2-coloring of G \ S, each vertex either remained the same
color or changed color. Adjacent vertices do the same, thus every
component either changed or remained.

⇐ Flip the coloring of those components of G \ S that contain
vertices from C \ S. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if
there is a set S that separates C and R. It can be done in time
O(k|E(G)|) using k iterations of the Ford-Fulkerson algorithm.

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is
bipartite.

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is
bipartite, find a set S of k vertices such that G \ S is bipartite.

S ′

Fixed Parameter Algorithms – p.53/98

The vertices of S′ can be disregarded. Thus we need to solve the
annotated problem on the bipartite graph G \ S′.
Running time: O(3k · k|E(G)|) time.

Step 2: The compression problem
Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is
bipartite.

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is
bipartite, find a set S of k vertices such that G \ S is bipartite.

deleted
S ′

black white

Branch into 3k+1 cases: each vertex of S ′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Fixed Parameter Algorithms – p.53/98

Branch into 3k+1 cases: each vertex of S′ is either black, white, or
deleted.
Trivial check: no edge between two black or two white vertices.

The vertices of S′ can be disregarded. Thus we need to solve the
annotated problem on the bipartite graph G \ S′.
Running time: O(3k · k|E(G)|) time.

Step 2: The compression problem
Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is
bipartite.

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is
bipartite, find a set S of k vertices such that G \ S is bipartite.

W

S ′

black white deleted

Branch into 3k+1 cases: each vertex of S ′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S ′ should be white and the neighbors of the
white vertices in S ′ should be black.

Fixed Parameter Algorithms – p.53/98

Branch into 3k+1 cases: each vertex of S′ is either black, white, or
deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S′ should be white and the
neighbors of the white vertices in S′ should be black.

The vertices of S′ can be disregarded. Thus we need to solve the
annotated problem on the bipartite graph G \ S′.
Running time: O(3k · k|E(G)|) time.

Step 2: The compression problem
Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is
bipartite.

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is
bipartite, find a set S of k vertices such that G \ S is bipartite.

BW

S ′

black white deleted

Branch into 3k+1 cases: each vertex of S ′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S ′ should be white and the neighbors of the
white vertices in S ′ should be black.

Fixed Parameter Algorithms – p.53/98

Branch into 3k+1 cases: each vertex of S′ is either black, white, or
deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S′ should be white and the
neighbors of the white vertices in S′ should be black.

The vertices of S′ can be disregarded. Thus we need to solve the
annotated problem on the bipartite graph G \ S′.
Running time: O(3k · k|E(G)|) time.

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is
bipartite.

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is
bipartite, find a set S of k vertices such that G \ S is bipartite.

W B

The vertices of S ′ can be disregarded. Thus we need to solve the annotated
problem on the bipartite graph G \ S ′.

Running time: O(3k · k |E (G)|) time.

Fixed Parameter Algorithms – p.53/98

The vertices of S′ can be disregarded. Thus we need to solve the
annotated problem on the bipartite graph G \ S′.
Running time: O(3k · k|E(G)|) time.

Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!

Let V (G) = {v1, . . . , vn} and let Gi be the graph induced by
{v1, . . . , vi}.
For every i, we find a set Si of size k such that Gi \ Si is bipartite.

I For Gk, the set Sk = {v1, . . . , vk} is a trivial solution.

I If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose
deletion makes Gi bipartite ⇒ We can use the compression
algorithm to find a suitable Si in time O(3k · k|E(Gi)|).

Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!

Let V (G) = {v1, . . . , vn} and let Gi be the graph induced by
{v1, . . . , vi}.
For every i, we find a set Si of size k such that Gi \ Si is bipartite.

I For Gk, the set Sk = {v1, . . . , vk} is a trivial solution.

I If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose
deletion makes Gi bipartite ⇒ We can use the compression
algorithm to find a suitable Si in time O(3k · k|E(Gi)|).

Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!

Let V (G) = {v1, . . . , vn} and let Gi be the graph induced by
{v1, . . . , vi}.
For every i, we find a set Si of size k such that Gi \ Si is bipartite.

I For Gk, the set Sk = {v1, . . . , vk} is a trivial solution.

I If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose
deletion makes Gi bipartite ⇒ We can use the compression
algorithm to find a suitable Si in time O(3k · k|E(Gi)|).

Step 3: Iterative Compression

Bipartite-Deletion(G, k)
1. Sk = {v1, . . . , vk}
2. for i := k + 1 to n

3. Invariant: Gi−1 \ Si−1 is bipartite.

4. Call Compression(Gi, Si−1 ∪ {vi})
5. If the answer is “NO” ⇒ return “NO”

6. If the answer is a set X ⇒ Si := X

7. Return the set Sn

Running time: the compression algorithm is called n times and
everything else can be done in linear time
⇒ O(3k · k|V (G)| · |E(G)|) time algorithm.

Color coding
FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Fixed Parameter Algorithms – p.8/98

Color coding

I Works best when we need to ensure that a small number of
“things” are disjoint.

I We demonstrate it on the problem of finding an s-t path of
length exactly k.

I Randomized algorithm, but can be derandomized using a
standard technique.

I Very robust technique, we can use it as an “opening step”
when investigating a new problem.

k-Path

Task: Given a graph G, an integer k, two vertices s, t, find a
simple s-t path with exactly k internal vertices.

Note: Finding such a walk can be done easily in polynomial time.

Note: The problem is clearly NP-hard, as it contains the s-t
Hamiltonian Path problem.

The k-Path algorithm can be used to check if there is a cycle of
length exactly k in the graph.

k-Path

I Assign colors from [k] to vertices V (G) \ {s, t} uniformly and
independently at random.

k -PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and independently at

random.

s t

Fixed Parameter Algorithms – p.69/98

I Check if there is a colorful s-t path: a path where each color
appears exactly once on the internal vertices; output “YES”
or “NO”.

I If there is no s-t k-path: no such colorful path exists ⇒ “NO”.
I If there is an s-t k-path: the probability that such a path is

colorful is
k!
kk

>
(k

e)k

kk
= e−k,

thus the algorithm outputs “YES” with at least that
probability.

k-Path

I Assign colors from [k] to vertices V (G) \ {s, t} uniformly and
independently at random.

k -PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and independently at

random.

s t

Fixed Parameter Algorithms – p.69/98

I Check if there is a colorful s-t path: a path where each color
appears exactly once on the internal vertices; output “YES”
or “NO”.

I If there is no s-t k-path: no such colorful path exists ⇒ “NO”.
I If there is an s-t k-path: the probability that such a path is

colorful is
k!
kk

>
(k

e)k

kk
= e−k,

thus the algorithm outputs “YES” with at least that
probability.

k-Path

I Assign colors from [k] to vertices V (G) \ {s, t} uniformly and
independently at random.

k -PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and independently at

random.

ts

Check if there is a colorful s-t path: a path where each color appears exactly

once on the internal vertices; output “YES” or “NO”.

Fixed Parameter Algorithms – p.69/98

I Check if there is a colorful s-t path: a path where each color
appears exactly once on the internal vertices; output “YES”
or “NO”.

I If there is no s-t k-path: no such colorful path exists ⇒ “NO”.
I If there is an s-t k-path: the probability that such a path is

colorful is
k!
kk

>
(k

e)k

kk
= e−k,

thus the algorithm outputs “YES” with at least that
probability.

k-Path

I Assign colors from [k] to vertices V (G) \ {s, t} uniformly and
independently at random.

k -PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and independently at

random.

ts

Check if there is a colorful s-t path: a path where each color appears exactly

once on the internal vertices; output “YES” or “NO”.

Fixed Parameter Algorithms – p.69/98

I Check if there is a colorful s-t path: a path where each color
appears exactly once on the internal vertices; output “YES”
or “NO”.

I If there is no s-t k-path: no such colorful path exists ⇒ “NO”.
I If there is an s-t k-path: the probability that such a path is

colorful is
k!
kk

>
(k

e)k

kk
= e−k,

thus the algorithm outputs “YES” with at least that
probability.

Error probability

I Useful fact: If the probability of success is at least p, then
the probability that the algorithm does not say “YES” after
1/p repetitions is at most

(1− p)1/p <
(
e−p
)1/p = 1/e ≈ 0.38

I Thus if p > e−k, then error probability is at most 1/e after ek

repetitions.

I Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.

I For example, by trying 100 · ek random colorings, the
probability of a wrong answer is at most 1/e100.

It remains to see how a colorful s-t path can be found.

Method 1: Trying all permutations.
Method 2: Dynamic programming.

Error probability

I Useful fact: If the probability of success is at least p, then
the probability that the algorithm does not say “YES” after
1/p repetitions is at most

(1− p)1/p <
(
e−p
)1/p = 1/e ≈ 0.38

I Thus if p > e−k, then error probability is at most 1/e after ek

repetitions.

I Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.

I For example, by trying 100 · ek random colorings, the
probability of a wrong answer is at most 1/e100.

It remains to see how a colorful s-t path can be found.

Method 1: Trying all permutations.
Method 2: Dynamic programming.

Method 1: Trying all permutations

The colors encountered on a colorful s-t path form a permutation
π of {1, 2, . . . , k}:

Method 1: Trying all permutations

The colors encountered on a colorful s-t path form a permutation π of {1, 2, ... , k}:

s t

π(k)...π(2)π(1)

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

Fixed Parameter Algorithms – p.71/98

We try all possible k! permutations. For a fixed π, it is easy to
check if there is a path with this order of colors.

Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to
check if there is a path with this order of colors.

Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

s

π(k)...π(2)π(1)

t

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E (G)|).
Fixed Parameter Algorithms – p.72/98

I Edges connecting nonadjacent color classes are removed.

I The remaining edges are directed.

I All we need to check if there is a directed s-t path.

I Running time is O(k! · |E(G)|).

Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to
check if there is a path with this order of colors.

Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

π(k)π(1) π(2) ...

s t

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E (G)|).
Fixed Parameter Algorithms – p.72/98

I Edges connecting nonadjacent color classes are removed.

I The remaining edges are directed.

I All we need to check if there is a directed s-t path.

I Running time is O(k! · |E(G)|).

Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to
check if there is a path with this order of colors.

Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

s t

π(1) π(2) ... π(k)

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E (G)|).
Fixed Parameter Algorithms – p.72/98

I Edges connecting nonadjacent color classes are removed.

I The remaining edges are directed.

I All we need to check if there is a directed s-t path.

I Running time is O(k! · |E(G)|).

Method 2: Dynamic Programming
We introduce 2k · |V (G)| Boolean variables:

x(v, C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is an s-v path where each color in C appears
exactly once and no other color appears.

Clearly, x(s, ∅) = TRUE. Recurrence for vertex v with color r:

x(v, C) =
∨

uv∈E(G)

x(u,C \ {r})

If we know every x(v, C) with |C| = i, then we can determine
every x(v, C) with |C| = i+ 1 ⇒ All the values can be determined
in time O(2k · |E(G)|).

There is a colorful s-t path ⇐⇒ x(v, [k]) = TRUE for some
neighbor of t.

Method 2: Dynamic Programming
We introduce 2k · |V (G)| Boolean variables:

x(v, C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is an s-v path where each color in C appears
exactly once and no other color appears.

Clearly, x(s, ∅) = TRUE. Recurrence for vertex v with color r:

x(v, C) =
∨

uv∈E(G)

x(u,C \ {r})

If we know every x(v, C) with |C| = i, then we can determine
every x(v, C) with |C| = i+ 1 ⇒ All the values can be determined
in time O(2k · |E(G)|).

There is a colorful s-t path ⇐⇒ x(v, [k]) = TRUE for some
neighbor of t.

Method 2: Dynamic Programming
We introduce 2k · |V (G)| Boolean variables:

x(v, C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is an s-v path where each color in C appears
exactly once and no other color appears.

Clearly, x(s, ∅) = TRUE. Recurrence for vertex v with color r:

x(v, C) =
∨

uv∈E(G)

x(u,C \ {r})

If we know every x(v, C) with |C| = i, then we can determine
every x(v, C) with |C| = i+ 1 ⇒ All the values can be determined
in time O(2k · |E(G)|).

There is a colorful s-t path ⇐⇒ x(v, [k]) = TRUE for some
neighbor of t.

Derandomization

Using Method 2, we obtain a O∗((2e)k) time algorithm with
constant error probability. How to make it deterministic?

Definition: A family H of functions [n]→ [k] is a k-perfect
family of hash functions if for every S ⊆ [n] with |S| = k, there is
a h ∈ H such that h(x) 6= h(y) for any x, y ∈ S, x 6= y.

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k]. If there is a solution
⇒ The internal vertices S are colorful for at least one h ∈ H ⇒
Algorithm outputs “YES”.

Theorem: There is a k-perfect family of functions [n]→ [k]
having size 2O(k) log n
(and can be constructed in time polynomial in the size of the
family).

⇒ There is a deterministic 2O(k) · nO(1) time algorithm for the
k-Path problem.

Derandomization

Using Method 2, we obtain a O∗((2e)k) time algorithm with
constant error probability. How to make it deterministic?

Definition: A family H of functions [n]→ [k] is a k-perfect
family of hash functions if for every S ⊆ [n] with |S| = k, there is
a h ∈ H such that h(x) 6= h(y) for any x, y ∈ S, x 6= y.

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k]. If there is a solution
⇒ The internal vertices S are colorful for at least one h ∈ H ⇒
Algorithm outputs “YES”.

Theorem: There is a k-perfect family of functions [n]→ [k]
having size 2O(k) log n
(and can be constructed in time polynomial in the size of the
family).

⇒ There is a deterministic 2O(k) · nO(1) time algorithm for the
k-Path problem.

Derandomization

Using Method 2, we obtain a O∗((2e)k) time algorithm with
constant error probability. How to make it deterministic?

Definition: A family H of functions [n]→ [k] is a k-perfect
family of hash functions if for every S ⊆ [n] with |S| = k, there is
a h ∈ H such that h(x) 6= h(y) for any x, y ∈ S, x 6= y.

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k]. If there is a solution
⇒ The internal vertices S are colorful for at least one h ∈ H ⇒
Algorithm outputs “YES”.

Theorem: There is a k-perfect family of functions [n]→ [k]
having size 2O(k) log n
(and can be constructed in time polynomial in the size of the
family).

⇒ There is a deterministic 2O(k) · nO(1) time algorithm for the
k-Path problem.

k-Disjoint Triangles

Task: Given a graph G and an integer k, find k vertex disjoint
triangles.

Step 1: Choose a random coloring V (G)→ [3k].

Step 2: Check if there is a colorful solution, where the 3k vertices
of the k triangles use distinct colors.

I Method 1: Try every permutation π of [3k] and check if
there are triangles with colors (π(1), π(2), π(3)),
(π(4), π(5), π(6)), . . .

I Method 2: Dynamic programming. For C ⊆ [3k] and
|C| = 3i, let x(C) = TRUE if and only if there are |C|/3
disjoint triangles using exactly the colors in C.

x(C) =
∨

{c1,c2,c3}⊆C

(x(C \ {c1, c2, c3}) ∧ ∃4 with colors c1, c2, c3)

k-Disjoint Triangles

Task: Given a graph G and an integer k, find k vertex disjoint
triangles.

Step 1: Choose a random coloring V (G)→ [3k].

Step 2: Check if there is a colorful solution, where the 3k vertices
of the k triangles use distinct colors.

I Method 1: Try every permutation π of [3k] and check if
there are triangles with colors (π(1), π(2), π(3)),
(π(4), π(5), π(6)), . . .

I Method 2: Dynamic programming. For C ⊆ [3k] and
|C| = 3i, let x(C) = TRUE if and only if there are |C|/3
disjoint triangles using exactly the colors in C.

x(C) =
∨

{c1,c2,c3}⊆C

(x(C \ {c1, c2, c3}) ∧ ∃4 with colors c1, c2, c3)

k-Disjoint Triangles

Step 3: Colorful solution exists with probability at least e−3k,
which is a lower bound on the probability of a correct answer.

Running time: constant error probability after e3k repetitions ⇒
running time is O∗((2e)3k) (using Method 2).

Derandomization: 3k-perfect family of functions instead of
random coloring. Running time is 2O(k) · nO(1).

Color coding

We have seen that color coding can be used to find paths, cycles
of length k, or a set of k disjoint triangles.

What other structures can be found efficiently with this technique?

The key is treewidth:

Theorem: Given two graph H,G, it can be decided if H is a
subgraph of G in time 2O(|V (H)|) · |V (G)|O(w), where w is the
treewidth of G.

Thus if H belongs to a class of graphs with bounded treewidth,
then the subgraph problem is FPT.

	Titlepage
	Brief overview
	Kernelization
	Crown Reduction
	Sunflower Lemma

	Branching and bounded search trees
	Forbidden subgraphs
	Chordal Completion

	Color Coding

