ŢĒDŌĒ,Ÿ. FOMĪŅ

Parameterized Algorithms II

St. Petersburg, 2011

Neil Robertson

Paul Seymour

- Some consequences of the Graph Minors Theorem give a quick way of showing that certain problems are FPT.
- ▶ However, the function f(k) in the resulting FPT algorithms can be HUGE, completely impractical.
- History: motivation for FPT.
- Parts and ingredients of the theory are useful for algorithm design.
- ▶ New algorithmic results are still being developed.

Definition: Graph H is a **minor** G ($H \le G$) if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.

Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., it is not a forest).

Equivalent definition: Graph H is a **minor** of G if there is a mapping ϕ that maps each vertex of H to a connected subset of G such that

- $ightharpoonup \phi(u)$ and $\phi(v)$ are disjoint if $u \neq v$, and
- ▶ if $uv \in E(G)$, then there is an edge between $\phi(u)$ and $\phi(v)$.

Minor closed properties

Definition: A set \mathcal{G} of graphs is **minor closed** if whenever $G \in \mathcal{G}$ and $H \leq G$, then $H \in \mathcal{G}$ as well.

Examples of minor closed properties:

planar graphs acyclic graphs (forests) graphs having no cycle longer than k empty graphs

Examples of **not** minor closed properties:

complete graphs regular graphs bipartite graphs

Forbidden minors

Let $\mathcal G$ be a minor closed set and let $\mathcal F$ be the set of "minimal bad graphs": $H \in \mathcal F$ if $H \not\in \mathcal G$, but every proper minor of H is in $\mathcal G$.

Characterization by forbidden minors:

$$G \in \mathcal{G} \iff \forall H \in \mathcal{F}, H \not\leq G$$

The set \mathcal{F} is the **obstruction set** of property \mathcal{G} .

Forbidden minors

Let $\mathcal G$ be a minor closed set and let $\mathcal F$ be the set of "minimal bad graphs": $H \in \mathcal F$ if $H \not\in \mathcal G$, but every proper minor of H is in $\mathcal G$.

Characterization by forbidden minors:

$$G \in \mathcal{G} \iff \forall H \in \mathcal{F}, H \not\leq G$$

The set \mathcal{F} is the **obstruction set** of property \mathcal{G} .

Theorem: [Wagner] A graph is planar if and only if it does not have a K_5 or $K_{3,3}$ minor.

In other words: the obstruction set of planarity is $\mathcal{F} = \{K_5, K_{3,3}\}.$

Does every minor closed property have such a finite characterization?

Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property \mathcal{G} has a finite obstruction set.

Note: The proof is contained in the paper series "Graph Minors I–XX".

Note: The size of the obstruction set can be astronomical even for simple properties.

Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property \mathcal{G} has a finite obstruction set.

Note: The proof is contained in the paper series "Graph Minors I–XX".

Note: The size of the obstruction set can be astronomical even for simple properties.

Theorem: [Robertson and Seymour] For every fixed graph H, there is an $O(n^3)$ time algorithm for testing whether H is a minor of the given graph G.

Corollary: For every minor closed property \mathcal{G} , there is an $O(n^3)$ time algorithm for testing whether a given graph \mathcal{G} is in \mathcal{G} .

Applications

PLANAR FACE COVER: Given a graph G and an integer k, find an embedding of planar graph G such that there are k faces that cover all the vertices.

One line argument:

For every fixed k, the class G_k of graphs of yes-instances is minor closed.

For every fixed k, there is a $O(n^3)$ time algorithm for PLANAR FACE COVER.

Note: non-uniform FPT.

Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, find a spanning tree with **at least** k leaves.

Technical modification: Is there such a spanning tree for at least one component of G?

One line argument:

For every fixed k, the class \mathcal{G}_k of no-instances is minor closed.

For every fixed k, k-LEAF SPANNING TREE can be solved in time $O(n^3)$.

G + k vertices

Let \mathcal{G} be a graph property, and let $\mathcal{G} + kv$ contain graph G if there is a set $S \subseteq V(G)$ of k vertices such that $G \setminus S \in \mathcal{G}$.

Lemma: If \mathcal{G} is minor closed, then $\mathcal{G} + kv$ is minor closed for every fixed k.

 \Rightarrow It is (nonuniform) FPT to decide if G can be transformed into a member of G by deleting k vertices.

$\mathcal{G} + k$ vertices

Let \mathcal{G} be a graph property, and let $\mathcal{G}+kv$ contain graph G if there is a set $S\subseteq V(G)$ of k vertices such that $G\setminus S\in \mathcal{G}$.

Lemma: If G is minor closed, then G + kv is minor closed for every fixed k.

- \Rightarrow It is (nonuniform) FPT to decide if G can be transformed into a member of \mathcal{G} by deleting k vertices.
 - ▶ If $\mathcal{G} = \text{forests} \Rightarrow \mathcal{G} + kv = \text{graphs that can be made acyclic}$ by the deletion of k vertices \Rightarrow FEEDBACK VERTEX SET is FPT.
 - ▶ If \mathcal{G} = planar graphs $\Rightarrow \mathcal{G} + kv$ = graphs that can be made planar by the deletion of k vertices (k-apex graphs) $\Rightarrow k$ -APEX GRAPH is FPT.
 - ▶ If $\mathcal{G} = \text{empty graphs} \Rightarrow \mathcal{G} + kv = \text{graphs with vertex cover}$ number at most $k \Rightarrow \text{VERTEX COVER}$ is FPT.

TREEVIDTH

Introduction and definition

Part I: Algorithms for bounded treewidth graphs.

Part II: Graph-theoretic properties of treewidth.

Part III: Applications for general graphs.

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

No fun with your direct boss!

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

No fun with your direct boss!

- ► **Input:** A tree with weights on the vertices.
- ► **Task:** Find an independent set of maximum weight.

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

No fun with your direct boss!

- ► **Input:** A tree with weights on the vertices.
- ► **Task:** Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

 T_{ν} : the subtree rooted at ν .

A[v]: max. weight of an independent set in T_v

B[v]: max. weight of an independent set in T_v that does

not contain v

Goal: determine A[r] for the root r.

Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

 T_v : the subtree rooted at v. A[v]: max. weight of an independent set in T_v B[v]: max. weight of an independent set in T_v that does not contain v

Goal: determine A[r] for the root r.

Method:

Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations

$$B[v] = \sum_{i=1}^{k} A[v_i]$$

$$A[v] = \max\{B[v], \ w(v) + \sum_{i=1}^{k} B[v_i]\}$$

The values A[v] and B[v] can be calculated in a bottom-up order (the leaves are trivial).

Treewidth: A measure of how "tree-like" the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex *v*, the bags containing *v* form a connected subtree.

Treewidth: A measure of how "tree-like" the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Treewidth: A measure of how "tree-like" the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Treewidth: A measure of how "tree-like" the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 iff graph is a forest

Treewidth: A measure of how "tree-like" the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 iff graph is a forest

Treewidth: A measure of how "tree-like" the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 iff graph is a forest

Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w), but there is a polynomial-time algorithm for every fixed w.

Finding tree decompositions

Fact: [Bodlaender's Theorem] For every fixed w, there is a linear-time algorithm that finds a tree decomposition of width w (if exists).

- \Rightarrow Deciding if treewidth is at most w is fixed-parameter tractable.
- \Rightarrow If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Finding tree decompositions

Fact: [Bodlaender's Theorem] For every fixed w, there is a linear-time algorithm that finds a tree decomposition of width w (if exists).

- \Rightarrow Deciding if treewidth is at most w is fixed-parameter tractable.
- \Rightarrow If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Running time is $2^{O(w^3)} \cdot n$. Sometimes it is better to use the following results instead:

Fact: There is a $O(3^{3w} \cdot w \cdot n^2)$ time algorithm that finds a tree decomposition of width 4w + 1, if the treewidth of the graph is at most w.

Fact: There is a polynomial-time algorithm that finds a tree decomposition of width $O(w\sqrt{\log w})$, if the treewidth of the graph is at most w

Part I: Algoritmhs for bounded-treewidth graphs

WEIGHTED MAX INDEPENDENT SET and tree decompositions

Fact: Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot n)$.

 B_x : vertices appearing in node x. V_x : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \le 2^{w+1}$ values for each bag B_x .

M[x, S]: the maximum weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

How to determine M[x, S] if all the values are known for the children of x?

Nice tree decompositions

Definition: A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- ▶ **Leaf:** no children, $|B_x| = 1$
- ▶ **Introduce:** 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v
- ▶ **Forget:** 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v
- ▶ **Join:** 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

Fact: A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and O(wn) nodes in time $O(w^2n)$.

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

- ▶ **Leaf:** no children, $|B_x| = 1$ Trivial!
- ▶ **Introduce:** 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v

$$m[x,S] = \begin{cases} m[y,S] & \text{if } v \notin S, \\ m[y,S \setminus \{v\}] + w(v) & \text{if } v \in S \text{ but } v \text{ has no neighbor in } S, \\ -\infty & \text{if } S \text{ contains } v \text{ and its neighbor.} \end{cases}$$

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

▶ **Forget:** 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

$$m[x,S] = \max\{m[y,S], m[y,S \cup \{v\}]\}$$

▶ **Join:** 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

$$m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$$

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

▶ **Forget:** 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

$$m[x,S] = \max\{m[y,S], m[y,S \cup \{v\}]\}$$

▶ **Join:** 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

$$m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$$

There are at most $2^{w+1} \cdot n$ subproblems m[x, S] and each subproblem can be solved in constant time (assuming the children are already solved) \Rightarrow Running time is $O(2^w \cdot n)$.

⇒ WEIGHTED MAX INDEPENDENT SET is FPT parameterized by treewidth ⇒ WEIGHTED MIN VERTEX COVER is FPT parameterized by treewidth.

3-COLORING and tree decompositions

Fact: Given a tree decomposition of width w, 3-Coloring can be solved in $O(3^w \cdot n)$.

 B_x : vertices appearing in node x. V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c: B_x \to \{1,2,3\}$, we compute the Boolean value E[x,c], which is true if and only if c can be extended to a proper 3-coloring of V_x .

How to determine E[x, c] if all the values are known for the children of x?

3-COLORING and nice tree decompositions

- ▶ **Leaf:** no children, $|B_x| = 1$ Trivial!
- ▶ **Introduce:** 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y, B_x = B_y \ {v} for some vertex v E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y.
- ▶ **Join:** 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

3-COLORING and nice tree decompositions

- ▶ **Leaf:** no children, $|B_x| = 1$ Trivial!
- ▶ **Introduce:** 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x,c] = E[y,c'], where c' is c restricted to B_y .
- Forget: 1 child y, B_x = B_y \ {v} for some vertex v E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y.
- ▶ **Join:** 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

There are at most $3^{w+1} \cdot n$ subproblems E[x, c] and each subproblem can be solved in constant time (assuming the children are already solved).

- \Rightarrow Running time is $O(3^w \cdot n)$.
- ⇒ 3-Coloring is FPT parameterized by treewidth.

Vertex coloring

More generally:

Fact: Given a tree decomposition of width w, c-COLORING can be solved in $O^*(c^w)$.

Exercise: Every graph of treewidth at most w can be colored with w+1 colors.

Fact: Given a tree decomposition of width w, VERTEX COLORING can be solved in time $O^*(w^w)$.

⇒ VERTEX COLORING is FPT parameterized by treewidth.

Fact: Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)} \cdot n$.

 B_x : vertices appearing in node x. V_x : vertices appearing in the subtree rooted at x.

If H is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x .

 B_x : vertices appearing in node x. V_x : vertices appearing in the subtree rooted at x.

If H is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x .

What are the important properties of $H[V_x]$ "seen from the outside world"?

- ► The subsets B_x^0 , B_x^1 , B_x^2 of B_x having degree 0, 1, and 2.
- ▶ The matching M of B_x^1 .

Number of subproblems (B_x^0, B_x^1, B_x^2, M) for each node x: at most $3^w \cdot w^w$.

For each subproblem (B_x^0, B_x^1, B_x^2, M) , we have to determine if there is a set of paths with this pattern.

How to do this for the different types of nodes? (Assuming that all the subproblems are solved for the children.)

Leaf: no children, $|B_x| = 1$

Trivial!

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

In a solution H of (B_x^0, B_x^1, B_x^2, M) , vertex v has degree 2. Thus subproblem (B_x^0, B_x^1, B_x^2, M) of x is equivalent to subproblem $(B_x^0, B_x^1, B_x^2 \cup \{v\}, M)$ of y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

In a solution H of (B_x^0, B_x^1, B_x^2, M) , vertex v has degree 2. Thus subproblem (B_x^0, B_x^1, B_x^2, M) of x is equivalent to subproblem $(B_x^0, B_x^1, B_x^2 \cup \{v\}, M)$ of y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

In a solution H of (B_x^0, B_x^1, B_x^2, M) , vertex v has degree 2. Thus subproblem (B_x^0, B_x^1, B_x^2, M) of x is equivalent to subproblem $(B_x^0, B_x^1, B_x^2 \cup \{v\}, M)$ of y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v

Case 1: $v \in B_x^0$.

Subproblem is equivalent with $(B_x^0 \setminus \{v\}, B_x^1, B_x^2, M)$ for node y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v

Case 2:

 $v \in B_x^1$. Every neighbor of v in V_x is in B_x . Thus v has to be adjacent with one other vertex of B_x .

Is there a subproblem $(B_y^0, B_y^1, B_y^2, M')$ of node y such that making a vertex of B_y adjacent to v makes it a solution for subproblem (B_x^0, B_x^1, B_x^2, M) of node x?

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v

Case 3: $v \in B_x^1$. Similar to Case 2, but 2 vertices of B_y are adjacent with v.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

A solution H is the union of a subgraph $H_1 \subseteq G[V_{y_1}]$ and a subgraph $H_2 \subseteq G[V_{y_2}]$.

If H_1 is a solution for $(B_{y_1}^0, B_{y_1}^1, B_{y_1}^2, M_1)$ of node y_1 and H_2 is a solution for $(B_{y_2}^0, B_{y_2}^1, B_{y_2}^2, M_2)$ of node y_2 , then we can check if $H_1 \cup H_2$ is a solution for (B_x^0, B_x^1, B_x^2, M) of node x.

For any two subproblems of y_1 and y_2 , we check if they have solutions and if their union is a solution for (B_x^0, B_x^1, B_x^2, M) of node x.

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- ▶ Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- ▶ quantifiers ∀, ∃ over vertex/edge variables
- ▶ predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- ▶ quantifiers ∀, ∃ over vertex/edge set variables
- ightharpoonup \in , \subseteq for vertex/edge sets

Example: The formula

 $\exists C \subseteq V \, \forall v \in C \, \exists u_1, u_2 \in C(u_1 \neq u_2 \land \operatorname{adj}(u_1, v) \land \operatorname{adj}(u_2, v))$ is true . . .

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- ▶ Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- ▶ quantifiers ∀, ∃ over vertex/edge variables
- ightharpoonup predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- ▶ quantifiers ∀, ∃ over vertex/edge set variables
- ightharpoonup \in , \subseteq for vertex/edge sets

Example: The formula

 $\exists C \subseteq V \, \forall v \in C \, \exists u_1, u_2 \in C(u_1 \neq u_2 \land \operatorname{adj}(u_1, v) \land \operatorname{adj}(u_2, v))$ is true if graph G(V, E) has a cycle.

Courcelle's Theorem

Courcelle's Theorem: If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

Courcelle's Theorem

Courcelle's Theorem: If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth \boldsymbol{w} of the input graph.

Can we express 3-COLORING and HAMILTONIAN CYCLE in EMSO?

3-Coloring

$$\exists C_1, C_2, C_3 \subseteq V \ (\forall v \in V \ (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \ \mathsf{adj}(u, v) \to (\neg(u \in C_1 \land v \in C_1) \land \neg(u \in C_2 \land v \in C_2) \land \neg(u \in C_3 \land v \in C_3)))$$

3-Coloring Hamiltonian Cycle

```
 \exists H \subseteq E \big( \mathsf{spanning}(H) \land (\forall v \in V \, \mathsf{degree2}(H, v)) \big) \\ \mathsf{degree0}(H, v) := \neg \exists e \in H \, \mathsf{inc}(e, v) \\ \mathsf{degree1}(H, v) := \neg \mathsf{degree0}(H, v) \land (\neg \exists e_1, e_2 \in H \, (e_1 \neq e_2 \land \mathsf{inc}(e_1, v) \land \mathsf{inc}(e_2, v)) \big) \\ \mathsf{degree2}(H, v) := \neg \mathsf{degree0}(H, v) \land \neg \mathsf{degree1}(H, v) \land (\neg \exists e_1, e_2, e_3 \in H \, (e_1 \neq e_2 \land e_2 \neq e_3 \land e_1 \neq e_3 \land \mathsf{inc}(e_1, v) \land \mathsf{inc}(e_2, v) \land \mathsf{inc}(e_3, v))) \big) \\ \mathsf{spanning}(H) := \forall u, v \in V \, \exists P \subseteq H \, \forall x \in V \, \big( ((x = u \lor x = v) \land \mathsf{degree1}(P, x)) \lor (x \neq u \land x \neq v \land (\mathsf{degree0}(P, x) \lor \mathsf{degree2}(P, x))) \big)
```

Two ways of using Courcelle's Theorem:

- 1. The problem can be described by a single formula (e.g,
- 3-Coloring, Hamiltonian Cycle).
- \Rightarrow Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w.
- \Rightarrow Problem is FPT parameterized by the treewidth w of the input graph.

Two ways of using Courcelle's Theorem:

- 1. The problem can be described by a single formula (e.g,
- 3-Coloring, Hamiltonian Cycle).
- \Rightarrow Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w.
- \Rightarrow Problem is FPT parameterized by the treewidth w of the input graph.
- 2. The problem can be described by a formula for each value of the parameter k.

Example: For each k, having a cycle of length exactly k can be expressed as

$$\exists v_1, \dots, v_k \in V (\mathsf{adj}(v_1, v_2) \land \mathsf{adj}(v_2, v_3) \land \dots \land \mathsf{adj}(v_{k-1}, v_k) \land \mathsf{adj}(v_k, v_1)).$$

- \Rightarrow Problem can be solved in time $f(k, w) \cdot n$ for graphs of treewidth w.
- \Rightarrow Problem is FPT parameterized with combined parameter k and treewidth w

Subgraph Isomorphism

SUBGRAPH ISOMORPHISM: given graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)| (size of the small graph).

For each H, we can construct a formula ϕ_H that expresses "G has a subgraph isomorphic to H" (similarly to the k-cycle on the previous slide).

Subgraph Isomorphism

SUBGRAPH ISOMORPHISM: given graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)| (size of the small graph).

For each H, we can construct a formula ϕ_H that expresses "G has a subgraph isomorphic to H" (similarly to the k-cycle on the previous slide).

 \Rightarrow By Courcelle's Theorem, SUBGRAPH ISOMORPHISM can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.

Subgraph Isomorphism

SUBGRAPH ISOMORPHISM: given graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)| (size of the small graph).

For each H, we can construct a formula ϕ_H that expresses "G has a subgraph isomorphic to H" (similarly to the k-cycle on the previous slide).

- \Rightarrow By Courcelle's Theorem, SUBGRAPH ISOMORPHISM can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.
- \Rightarrow Since there is only a finite number of simple graphs on k vertices, Subgraph Isomorphism can be solved in time $f(k, w) \cdot n$ if H has k vertices and G has treewidth at most w.
- \Rightarrow SUBGRAPH ISOMORPHISM is FPT parameterized by combined parameter k := |V(H)| and the treewidth w of G.

Part II: Graph-theoretical properties

of treewidth

The Robber and Cops game

Game: *k* cops try to capture a robber in the graph.

- ▶ In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- ► The robber moves infinitely fast on the edges, and sees where the cops will land.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game

Fact:

k+1 cops can win the game iff the treewidth of the graph is at most k.

The Robber and Cops game

Fact:

k+1 cops can win the game iff the treewidth of the graph is at most k.

The winner of the game can be determined in time $n^{O(k)}$ using standard techniques (there are at most n^k positions for the cops)

For every fixed k, it can be checked in polynomial-time if treewidth is at most k.

The Robber and Cops game

Fact:

k+1 cops can win the game iff the treewidth of the graph is at most k.

The winner of the game can be determined in time $n^{O(k)}$ using standard techniques (there are at most n^k positions for the cops)

For every fixed k, it can be checked in polynomial-time if treewidth is at most k.

Exercise 1: Show that the treewidth of the $k \times k$ grid is at least k-1.

Exercise 2: Show that the treewidth of the $k \times k$ grid is at least k.

Properties of treewidth

Fact: For every $k \ge 2$, the treewidth of the $k \times k$ grid is exactly k.

Properties of treewidth

Fact: For every $k \ge 2$, the treewidth of the $k \times k$ grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If F is a **minor** of G, then the treewidth of F is at most the treewidth of G.

Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of G is at least $k^{4k^2(k+2)}$, then G has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large.

Fact: Every **planar graph** with treewidth at least 4k has $k \times k$ grid minor.

Outerplanar graphs

Definition: A planar graph is **outerplanar** if it has a planar embedding where every vertex is on the infinite face.

Fact: Every outerplanar graph has treewidth at most 2.

k-outerplanar graphs

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

Fact: Every k-outerplanar graph has treewidth at most 3k + 1.

Part III: Applications

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

Layers of the planar graph: (as in the definition of *k*-outerplanar):

▶ For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

- ▶ For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ▶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ▶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

- ▶ For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ▶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ▶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- ▶ We do this for every $0 \le s < k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.
- ▶ SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

- ► For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ▶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ▶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- ▶ We do this for every $0 \le s < k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.
- ▶ SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

- ► For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ▶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ▶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- ▶ We do this for every $0 \le s < k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.
- ▶ SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

- ▶ For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ▶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ▶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- ▶ We do this for every $0 \le s < k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.
- ▶ SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|.

Detour to approximation...

Detour to approximation algorithms

Definition: A c-approximation algorithm for a maximization problem is a polynomial-time algorithm that finds a solution of cost at least OPT/c.

Definition: A c-approximation algorithm for a minimization problem is a polynomial-time algorithm that finds a solution of cost at most $\mathsf{OPT} \cdot c$.

There are well-known approximation algorithms for NP-hard problems: $\frac{3}{2}$ -approximation for METRIC TSP, 2-approximation for VERTEX COVER, $\frac{8}{7}$ -approximation for MAX 3SAT, etc.

- ▶ For some problems, we have lower bounds: there is no (2ϵ) -approximation for VERTEX COVER or $(\frac{8}{7} \epsilon)$ -approximation for MAX 3SAT (under suitable complexity assumptions).
- For some other problems, arbitrarily good approximation is possible in polynomial time: for any c>1 (say, c=1.000001), there is a polynomial-time c-approximation

Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS) for a problem P is an algorithm that takes an instance of P and a rational number $\epsilon > 0$,

- ▶ always finds a $(1 + \epsilon)$ -approximate solution,
- ▶ the running time is polynomial in *n* for every fixed $\epsilon > 0$.

Typical running times: $2^{1/\epsilon} \cdot n$, $n^{1/\epsilon}$, $(n/\epsilon)^2$, n^{1/ϵ^2} .

Some classical problems that have a PTAS:

- ► INDEPENDENT SET for planar graphs
- ► TSP in the Euclidean plane
- ► STEINER TREE in planar graphs
- KNAPSACK

Baker's shifting strategy for EPTAS

Fact: There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for INDEPENDENT SET for planar graphs.

- ▶ Let $D := 1/\epsilon$. For a fixed $0 \le s < D$, delete every layer L_i with $i = s \pmod{D}$
- ▶ The resulting graph is D-outerplanar, hence it has treewidth at most $3D + 1 = O(1/\epsilon)$.
- ▶ Using the $O(2^w \cdot n)$ time algorithm for INDEPENDENT SET, the problem can be solved in time $2^{O(1/\epsilon)} \cdot n$.
- ▶ We do this for every $0 \le s < D$: for at least one value of s, we delete at most $1/D = \epsilon$ fraction of the solution \Rightarrow we get a $(1 + \epsilon)$ -approximate solution.

Back to FPT...

Bidimensionality

A powerful framework to obtain efficient algorithms on planar graphs.

Let x(G) be some graph invariant (i.e., an integer associated with each graph).

Some typical examples:

- Maximum independent set size.
- Minimum vertex cover size.
- Length of the longest path.
- Minimum dominating set size
- Minimum feedback vertex set size.

Given G and k, we want to decide if $x(G) \le k$ (or $x(G) \ge k$).

For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

BIDIMENSIONALITY FOR VERTEX COVER

Bidimensionality for Vertex Cover

 $\operatorname{vc}(H_{r,r}) \geq \frac{r^2}{2}$

Bidimensionality for VERTEX COVER

Observation: If the treewidth of a planar graph G is at least $4\sqrt{2}k$

- \Rightarrow It contains a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Excluded Grid Theorem for planar graphs)
- \Rightarrow The vertex cover size of the grid is at least k in the grid
- \Rightarrow Vertex cover size is at least k in G.

We use this observation to solve VERTEX COVER on planar graphs as follows:

- ▶ Use the 4-approximation tree decomposition algorithm $(2^{O(w)} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$ time).
 - ▶ If treewidth is at least w: we answer 'vertex cover is $\geq k$ '.
 - If we get a tree decomposition of width 4w, then we can solve the problem in time $2^w \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Definition: A graph invariant x(G) is **minor-bidimensional** if

- ▶ $x(G') \le x(G)$ for every minor G' of G, and
- ▶ If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition: A graph invariant x(G) is **minor-bidimensional** if

- ▶ $x(G') \le x(G)$ for every minor G' of G, and
- ▶ If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition: A graph invariant x(G) is **minor-bidimensional** if

- ▶ $x(G') \le x(G)$ for every minor G' of G, and
- ▶ If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

We can answer " $x(G) \ge k$?" for a minor-bidimensional parameter the following way:

- ▶ Set $w := c\sqrt{k}$ for an appropriate constant c.
- ▶ Use the 4-approximation tree decomposition algorithm.
 - ▶ If treewidth is at least w: x(G) is at least k.
 - ▶ If we get a tree decomposition of width 4w, then we can solve the problem using dynamic programming on the tree decomposition.

Running time:

- If we can solve the problem using a width w tree decomposition in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.
- ▶ If we can solve the problem using a width w tree decomposition in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k}\log k)} \cdot n^{O(1)}$.

Summary

- ▶ Notion of treewidth allows us to generalize dynamic programming on trees to more general graphs.
- Standard techniques for designing algorithms on bounded treewidth graphs: dynamic programming and Courcelle's Theorem.
- Surprising uses of treewidth in other contexts (planar graphs).