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Graph Minors

» Some consequences of the Graph Minors Theorem give a
quick way of showing that certain problems are FPT.

» However, the function f(k) in the resulting FPT algorithms
can be HUGE, completely impractical.

» History: motivation for FPT.

» Parts and ingredients of the theory are useful for algorithm
design.

» New algorithmic results are still being developed.



Graph Minors

Definition: Graph H is a minor G (H < G) if H can be obtained
from G by deleting edges, deleting vertices, and contracting edges.

N

u v
deleting u)v/ \::ntracting uv
u v w

Example: A triangle is a minor of a graph G if and only if G has a
cycle (i.e., it is not a forest).



Graph minors

Equivalent definition: Graph H is a minor of G if there is a
mapping ¢ that maps each vertex of H to a connected subset of G
such that

» ¢(u) and ¢(v) are disjoint if u # v, and
» if uv € E(G), then there is an edge between ¢(u) and ¢(v).




Minor closed properties

Definition: A set G of graphs is minor closed if whenever G € G
and H < G, then H € G as well.

Examples of minor closed properties:
planar graphs
acyclic graphs (forests)
graphs having no cycle longer than k
empty graphs

Examples of not minor closed properties:
complete graphs
regular graphs
bipartite graphs



Forbidden minors

Let G be a minor closed set and let F be the set of “minimal bad
graphs”: H € F if H ¢ G, but every proper minor of H is in G.

Characterization by forbidden minors:
GeG<—VHe F HLG

The set F is the obstruction set of property G.



Forbidden minors

Let G be a minor closed set and let F be the set of “minimal bad
graphs”: H € F if H ¢ G, but every proper minor of H is in G.

Characterization by forbidden minors:
GeG<—VHe F HLG

The set F is the obstruction set of property G.

Theorem: [Wagner] A graph is planar if and only if it does not
have a Ks or K33 minor.

In other words: the obstruction set of planarity is 7 = {Ks, K33}

Does every minor closed property have such a finite
characterization?



Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property
G has a finite obstruction set.

Note: The proof is contained in the paper series “Graph Minors
[-XX".

Note: The size of the obstruction set can be astronomical even for
simple properties.



Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property
G has a finite obstruction set.

Note: The proof is contained in the paper series “Graph Minors
[-XX".

Note: The size of the obstruction set can be astronomical even for
simple properties.

Theorem: [Robertson and Seymour]| For every fixed graph H,
there is an O(n®) time algorithm for testing whether H is a minor
of the given graph G.

Corollary: For every minor closed property G, there is an
O(n%) time
algorithm for testing whether a given graph G is in G.




Applications

PrLAaNAR FACE COVER: Given a graph G and an integer k, find
an embedding of planar graph G such that there are k faces that
cover all the vertices.

One line argument:

For every fixed k, the class Gy of graphs of yes-instances is minor
closed.

4

For every fixed k, there is a O(n%) time algorithm for PLANAR
FACE COVER.

Note: non-uniform FPT.



Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, find
a spanning tree with at least k leaves.

™~

Technical modification: Is there such a spanning tree for at least
one component of G?

One line argument:

For every fixed k, the class Gi of no-instances is minor closed.

I

For every fixed k, k-LEAF SPANNING TREE can be solved in time
O(n%).



G + k vertices

Let G be a graph property, and let G + kv contain graph G if there
is aset S C V(G) of k vertices such that G\ S € G.

Lemma: If G is minor closed, then G 4+ kv is minor closed for
every fixed k.

= It is (nonuniform) FPT to decide if G can be transformed into a
member of G by deleting k vertices.



G + k vertices

Let G be a graph property, and let G + kv contain graph G if there
is aset S C V(G) of k vertices such that G\ S € G.

Lemma: If G is minor closed, then G 4+ kv is minor closed for
every fixed k.

= It is (nonuniform) FPT to decide if G can be transformed into a
member of G by deleting k vertices.

» If G = forests = G + kv = graphs that can be made acyclic
by the deletion of k vertices = FEEDBACK VERTEX SET is
FPT.

» If G = planar graphs = G + kv = graphs that can be made
planar by the deletion of k vertices (k-apex graphs) =
k-APEX GRAPH is FPT.

» If G = empty graphs = G + kv = graphs with vertex cover
number at most k = VERTEX COVER is FPT.
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Introduction and definition

Part I:. Algorithms for bounded treewidth graphs.
Part II: Graph-theoretic properties of treewidth.
Part III: Applications for general graphs.



The Party Problem

PARTY PROBLEM
Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
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> Input: A tree with weights
on the vertices.

» Task: Find an independent
set of maximum weight.
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Solving the Party Problem

Dynamic programming paradigm: We solve a large number of
subproblems that depend on each other. The answer is a single
subproblem.

T,: the subtree rooted at v.

A[v]: max. weight of an independent set in T,

B[v]: max. weight of an independent set in T, that does
not contain v

Goal: determine A[r] for the root r.



Solving the Party Problem

Dynamic programming paradigm: We solve a large number of
subproblems that depend on each other. The answer is a single
subproblem.

T,: the subtree rooted at v.

A[v]: max. weight of an independent set in T,

B[v]: max. weight of an independent set in T, that does
not contain v

Goal: determine A[r] for the root r.

Method:
Assume vi, ..., vk are the children of v. Use the recurrence
relations

B[v] = 31, Alv]
Alv] = max{B[v] . w(v) + Y21, B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order
(the leaves are trivial).



Treewidth

Treewidth: A measure of how “tree-like”
the graph is.
(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are ar-
ranged in a tree structure satisfying the fol-
lowing properties:

1. If u and v are neighbors, then there is
a bag containing both of them.

2. For every vertex v, the bags
containing v form a connected
subtree.
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Treewidth: A measure of how “tree-like”
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(Introduced by Robertson and Seymour.)
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Treewidth

Treewidth: A measure of how “tree-like”
the graph is.
(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are ar-
ranged in a tree structure satisfying the fol-
lowing properties:

1. If u and v are neighbors, then there is
a bag containing both of them.

2. For every vertex v, the bags
containing v form a connected
subtree.

Width of the decomposition: largest bag
size —1.
treewidth: width of the best decomposi-

tion.

Fact: treewidth = 1 iff graph is a forest
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Treewidth

Treewidth: A measure of how “tree-like”
the graph is.
(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are ar-
ranged in a tree structure satisfying the fol-
lowing properties:

1. If u and v are neighbors, then there is
a bag containing both of them.

2. For every vertex v, the bags
containing v form a connected
subtree.

Width of the decomposition: largest bag
size —1.

treewidth: width of the best decomposi-
tion.

Fact: treewidth = 1 iff graph is a forest



Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a
graph G and an integer w, decide if the treewidth of G is at most
w), but there is a polynomial-time algorithm for every fixed w.



Finding tree decompositions

Fact: [Bodlaender's Theorem| For every fixed w, there is a
linear-time algorithm that finds a tree decomposition of width w
(if exists).

= Deciding if treewidth is at most w is fixed-parameter tractable.
= If we want an FPT algorithm parameterized by treewidth w of
the input graph, then we can assume that a tree decomposition of
width w is available.



Finding tree decompositions

Fact: [Bodlaender's Theorem| For every fixed w, there is a
linear-time algorithm that finds a tree decomposition of width w
(if exists).

= Deciding if treewidth is at most w is fixed-parameter tractable.
= If we want an FPT algorithm parameterized by treewidth w of
the input graph, then we can assume that a tree decomposition of
width w is available.

Running time is 20(w?) . n. Sometimes it is better to use the
following results instead:

Fact: There is a O(33" - w - n?) time algorithm that finds a tree
decomposition of width 4w + 1, if the treewidth of the graph is at
most w.

Fact: There is a polynomial-time algorithm that finds a tree
decomposition of width O(w+/log w), if the treewidth of the graph
is at most w.



Part [:

Algoritmhs for
bounded-treewidth graphs



WEIGHTED MAX INDEPENDENT SET

and tree decompositions

Fact: Given a tree decomposition of width w, WEIGHTED MAX
INDEPENDENT SET can be solved in time O(2" - n).

B.: vertices appearing in node x.
V,: vertices appearing in the subtree
rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v],

—7 —7

B|v] for each vertex of the graph, we %;:, gf;
compute 2!B< < 2%+ yalues for each c=? bf=?
f =7 bcf =7

bag By.

M(x, S]: the maximum weight of an

independent set | C V, with I N B, =

S.

How to determine M[x, S] if all the values are known for
the children of x7



Nice tree decompositions
Definition: A rooted tree decomposition is nice if every node x is
one of the following 4 types:
» Leaf: no children, |By| =1
» Introduce: 1 child y, By = B, U {v} for some vertex v
» Forget: 1 child y, B, = B, \ {v} for some vertex v
» Join: 2 children y1, y» with B, = B,, = B,,

Leaf Introduce  Forget Join

Tesse

Fact: A tree decomposition of width w and n nodes can be turned
into a nice tree decomposition of width w and O(wn) nodes in
time O(w?n).



WEIGHTED MAX INDEPENDENT SET
and nice tree decompositions

» Leaf: no children, |By| =1
Trivial!
» Introduce: 1 child y, By = B, U {v} for some vertex v

mly, S] ifvegs,

m[x,S] = { mly,S\ {v}]+w(v) if v €S but v has no neighborin S,
—00 if S contains v and its neighbor.
Leaf Introduce  Forget Join

Tesse



WEIGHTED MAX INDEPENDENT SET
and nice tree decompositions

» Forget: 1 child y, By = B, \ {v} for some vertex v
mlx, S] = max{ml[y, ], m[y, S U{v}]}
» Join: 2 children y1, y» with B, = B,, = B,,

mlx, S| = m[y1, S| + m[y2, S| — w(S)

Leaf Introduce ~ Forget Join

Tesse



WEIGHTED MAX INDEPENDENT SET
and nice tree decompositions

» Forget: 1 child y, By = B, \ {v} for some vertex v
m[x, S| = max{mly, S], m[y, S U{v}]|}
» Join: 2 children y1, y» with By = B, = B,,

mlx, S| = mly1, S] + mly2, 5] — w($)

There are at most 2" . n subproblems m[x, S] and each
subproblem can be solved in constant time (assuming the children
are already solved) = Running time is O(2" - n).

= WEIGHTED MAX INDEPENDENT SET is FPT parameterized
by treewidth = WEIGHTED MIN VERTEX COVER is FPT
parameterized by treewidth.



3-COLORING and tree decompositions

Fact: Given a tree decomposition of width w, 3-COLORING can
be solved in O(3" - n).

B vertices appearing in node x.
Vi: vertices appearing in the subtree
rooted at x.

For every node x and coloring ¢ : By —
{1,2,3}, we compute the Boolean
value E[x, c], which is true if and only
if ¢ can be extended to a proper 3-

coloring of V. Ec;i Em;:i
Cl= Cl=

How to determine E[x, c] if all the values are known for
the children of x?



3-COLORING and nice tree decompositions

» Leaf: no children, |By| =1
Trivial!
» Introduce: 1 child y, By = B, U {v} for some vertex v
If c(v) # c(u) for every neighbor u of v, then
E[x,c] = Ely, c], where ¢’ is c restricted to B,.
» Forget: 1 child y, B, = B, \ {v} for some vertex v
E[x,c] is true if E[y,c'] is true for one of the 3 extensions of
cto B,.
» Join: 2 children y1, y» with B, = B,, = B,,
E[x,c] = E[y1, c] A E[y2, c]

Leaf Introduce ~ Forget Join

oo



3-COLORING and nice tree decompositions

» Leaf: no children, |By| =1
Trivial!
> Introduce: 1 child y, By = B, U {v} for some vertex v
If c(v) # c(u) for every neighbor u of v, then
E[x,c] = Ely, c], where ¢’ is ¢ restricted to B,.
> Forget: 1 child y, By = B, \ {v} for some vertex v
E[x,c] is true if E[y, c'] is true for one of the 3 extensions of
cto B,.
» Join: 2 children y;, y» with By = B, = B,,
Elx,c] = Ely1, c] A Elyz, €]

There are at most 3”1 - n subproblems E[x, c| and each
subproblem can be solved in constant time (assuming the children
are already solved).

= Running time is O(3" - n).

= 3-COLORING is FPT parameterized by treewidth.



Vertex coloring

More generally:

Fact: Given a tree decomposition of width w, c-COLORING can
be solved in O*(c").

Exercise: Every graph of treewidth at most w can be colored with
w + 1 colors.

Fact: Given a tree decomposition of width w, VERTEX
COLORING can be solved in time O*(w").

= VERTEX COLORING is FPT parameterized by treewidth.



Hamiltonian cycle and
tree decompositions

Fact: Given a tree decomposition of width w, HAMILTONIAN
CYCLE can be solved in time wO") . p.

By: vertices appearing in node x.
Vi: vertices appearing in the subtree
rooted at x.

If H is a Hamiltonian cycle, then the
subgraph H[V,] is a set of paths with
endpoints in By.




Hamiltonian cycle and
tree decompositions

B vertices appearing in node x.
Vi: vertices appearing in the subtree
rooted at x.

If H is a Hamiltonian cycle, then the
subgraph H[V.] is a set of paths with
endpoints in By.

What are the important properties of
H[V] “seen from the outside world”?
» The subsets B, BL, B2 of B,
having degree 0, 1, and 2.
» The matching M of BL.
Number of subproblems (B2, B}, B2, M) for each node x: at most
3V w".



Hamiltonian cycle and
nice tree decompositions

For each subproblem (B2, BL, B2, M), we have to determine if
there is a set of paths with this pattern.

How to do this for the different types of nodes?
(Assuming that all the subproblems are solved for the children.)

Leaf: no children, |By| =1

Trivial!



Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B, B}, B2, M) of node x.
Forget: 1 child y, By = B, \ {v} for some vertex v

In a solution H of (B, BL, B2, M), vertex v has degree 2. Thus
subproblem (B2, B, B2, M) of x is equivalent to subproblem
(BY, By, BZU{v}, M) of y.

B B! B?




Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B2, BL, B2, M) of node x.
Forget: 1 child y, B, = B, \ {v} for some vertex v

In a solution H of (B, BL, B2, M), vertex v has degree 2. Thus
subproblem (B?, BL, B2, M) of x is equivalent to subproblem
(BY, By, BEU{v}, M) of y.

B B B

S




Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B2, BL, B2, M) of node x.
Forget: 1 child y, B, = B, \ {v} for some vertex v

In a solution H of (B, BL, B2, M), vertex v has degree 2. Thus
subproblem (B2, BL, B2, M) of x is equivalent to subproblem
(B2, Bx, B U{v}, M) of y.




Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B2, BL, B2, M) of node x.
Introduce: 1 child y, B, = B, U {v} for some vertex v

Case 1: v € BY.
Subproblem is equivalent with (B2 \ {v}, B, B2, M) for node y.

B B! B2 B} B, B;

x &=




Hamiltonian cycle and

nice tree decompositions
Solving subproblem (B2, BL, B2, M) of node x.
Introduce: 1 child y, B, = B, U {v} for some vertex v

Case 2:
v € B}. Every neighbor of v in Vi is in By. Thus v has to be
adjacent with one other vertex of By.

Is there a subproblem (BY, B}, B}, M') of node y such that making a
vertex of B, adjacent to v makes it a solution for subproblem
(B?, BL, B2, M) of node x?

2
B B. B By B, By

-X




Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B2, BL, B2, M) of node x.
Introduce: 1 child y, B, = B, U {v} for some vertex v

Case 3: v € BL. Similar to Case 2, but 2 vertices of B, are
adjacent with v.

B B B? B!




Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B2, BL, B2, M) of node x.
Join: 2 children yq, y» with By = B, = B,,

A solution H is the union of a subgraph H; C G[V,,] and a
subgraph H, C G[V,,].

If H; is a solution for (8}91, B}}l, 831’ M) of node y; and H, is a

solution for (B, Bj,, BZ,, M>) of node y», then we can check if

Hi U Hy is a solution for (B2, BL, B2, M) of node x.

For any two subproblems of y; and y», we check if they have
solutions and if their union is a solution for (BY, BL, B2, M) of
node x.



Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
» Logical connectives A, V, —, 0, =, #
» quantifiers V, 3 over vertex/edge variables
» predicate adj(u, v): vertices u and v are adjacent
» predicate inc(e, v): edge e is incident to vertex v
» quantifiers V, 3 over vertex/edge set variables
» €, C for vertex/edge sets

Example: The formula
AC C VVv e C3u,u € Clug # up ANadj(ur, v) Aadj(uz, v)) is
true ...



Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
» Logical connectives A, V, —, 0, =, #
» quantifiers V, 3 over vertex/edge variables
» predicate adj(u, v): vertices u and v are adjacent
» predicate inc(e, v): edge e is incident to vertex v
» quantifiers V, 3 over vertex/edge set variables
» €, C for vertex/edge sets

Example: The formula
AC C VVv e C3u,u € Clug # up ANadj(ur, v) Aadj(uz, v)) is
true if graph G(V/, E) has a cycle.



Courcelle’s Theorem

Courcelle’s Theorem: If a graph property can be expressed in
EMSO, then for every fixed w > 1, there is a linear-time algorithm
for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.



Courcelle’s Theorem

Courcelle’s Theorem: If a graph property can be expressed in
EMSO, then for every fixed w > 1, there is a linear-time algorithm
for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.

If we can express a property in EMSQO, then we immediately get
that testing this property is FPT parameterized by the treewidth w
of the input graph.

Can we express 3-COLORING and HAMILTONIAN CYCLE in
EMSO?



Using Courcelle's Theorem

3-COLORING

E|C1,C2,C3§V(VVE V(VECl\/VGCg\/VE C3))/\(VU,V€
Vadj(u,v) = (~(ue GAve G)AN-(ue GAve G)A-(ue
C3/\V€C3)))



Using Courcelle's Theorem

3-COLORING HAMILTONIAN CYCLE

JH C E(spanning(H) A (Vv € V degree2(H, v)))

degree0(H, v) := —Je € Hinc(e, v)

degreel(H, v) := ~degree0(H, v) A (=Jey, e € H (&1 #

e Ainc(er, v) Ainc(ez, v)))

degree2(H, v) := —~degree0(H, v) A ~degreel(H, v) A (—3ey, e, 63 €
H(er # e2 Nex # e3 A ey # e3 Ainc(er, v) Ainc(ez, v) Ainc(es, v))))
spanning(H) :==Vu,v € VIPC HYx e V ((x =uVx =

v) Adegreel(P,x)) V (x # uAx # v A (degree0(P, x) V degree2(P, x))))



Using Courcelle's Theorem
Two ways of using Courcelle’'s Theorem:

1. The problem can be described by a single formula (e.g,
3-COLORING, HAMILTONIAN CYCLE).

= Problem can be solved in time f(w) - n for graphs of treewidth
at most w.

= Problem is FPT parameterized by the treewidth w of the input
graph.



Using Courcelle's Theorem
Two ways of using Courcelle’'s Theorem:

1. The problem can be described by a single formula (e.g,
3-COLORING, HAMILTONIAN CYCLE).

= Problem can be solved in time f(w) - n for graphs of treewidth
at most w.

= Problem is FPT parameterized by the treewidth w of the input
graph.

2. The problem can be described by a formula for each value of
the parameter k.

Example: For each k, having a cycle of length exactly k can be
expressed as

vy, .., vk € V(adj(ve, v2)Aadj(ve, v3)A- - -Aadi(vk—1, vik)Aadj(vk, v1)).

= Problem can be solved in time f(k,w) - n for graphs of
treewidth w.

= Problem is FPT parameterized with combined parameter k and

+roawnwid+rh s



SUBGRAPH [ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs H and G, find a copy of
H in G as subgraph. Parameter k := |V/(H)| (size of the small
graph).

For each H, we can construct a formula ¢y that expresses “G has
a subgraph isomorphic to H" (similarly to the k-cycle on the
previous slide).
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SUBGRAPH [ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs H and G, find a copy of
H in G as subgraph. Parameter k := |V/(H)| (size of the small
graph).

For each H, we can construct a formula ¢y that expresses “G has
a subgraph isomorphic to H" (similarly to the k-cycle on the
previous slide).

= By Courcelle's Theorem, SUBGRAPH ISOMORPHISM can be
solved in time f(H,w) - n if G has treewidth at most w.

= Since there is only a finite number of simple graphs on k
vertices, SUBGRAPH ISOMORPHISM can be solved in time
f(k,w) - nif H has k vertices and G has treewidth at most w.

= SUBGRAPH [SOMORPHISM is FPT parameterized by combined
parameter k := |V (H)| and the treewidth w of G.



Part Il:
Graph-theoretical properties
of treewidth



The Robber and Cops game

Game: k cops try to capture a robber in the graph.
» In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.

» The robber moves infinitely fast on the edges, and sees where
the cops will land.



The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.




The Robber and Cops game

Fact:
k + 1 cops can win the game iff the treewidth of the graph is at
most k.



The Robber and Cops game

Fact:
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The Robber and Cops game

Fact:
k + 1 cops can win the game iff the treewidth of the graph is at
most k.

The winner of the game can be determined in time n®(K) using

standard techniques (there are at most n* positions for the cops)

I
For every fixed k, it can be checked in polynomial-time if treewidth
is at most k.
Exercise 1: Show that the treewidth of the k x k grid is at least
k—1.

Exercise 2: Show that the treewidth of the k x k grid is at least k.
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Fact: For every k > 2, the treewidth of the k x k grid is exactly k.
o—o 0 o




Properties of treewidth

Fact: For every k > 2, the treewidth of the k x k grid is exactly k.
o—o 0 o

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

= If F is a minor of G, then the treewidth of F is at most the
treewidth of G.



Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of G is at least
k42 (k+2) then G has a k x k grid minor.

A large grid minor is a “witness” that treewidth is large.

Fact: Every planar graph with treewidth at least 4k has k x k
grid minor.



Outerplanar graphs

Definition: A planar graph is outerplanar if it has a planar
embedding where every vertex is on the infinite face.

Fact: Every outerplanar graph has treewidth at most 2.



k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar
embedding having at most k layers.

@

Fact: Every k-outerplanar graph has treewidth at most 3k + 1.



Part IlI:
Applications
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Detour to

approximation algorithms

Definition: A c-approximation algorithm for a maximization
problem is a polynomial-time algorithm that finds a solution of
cost at least OPT/c.

Definition: A c-approximation algorithm for a minimization
problem is a polynomial-time algorithm that finds a solution of
cost at most OPT - c.

There are well-known approximation algorithms for NP-hard
problems: %—approximation for METRIC TSP, 2-approximation for
VERTEX COVER, %—approximation for Max 3SAT, etc.

» For some problems, we have lower bounds: there is no
(2 — €)-approximation for VERTEX COVER or
(% — €)-approximation for MAX 3SAT (under suitable
complexity assumptions).

» For some other problems, arbitrarily good approximation is
possible in polynomial time: for any ¢ > 1 (say,

¢ = 1.000001), there is a polynomial-time c-approximation



Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS)
for a problem P is an algorithm that takes an instance of P and a
rational number € > 0,

» always finds a (1 + €)-approximate solution,

» the running time is polynomial in n for every fixed ¢ > 0.

Typical running times: ol/e. n ptle (n/e€)?, nl/€.
Some classical problems that have a PTAS:

» INDEPENDENT SET for planar graphs

» TSP in the Euclidean plane

» STEINER TREE in planar graphs

» KNAPSACK



Baker's shifting strategy for EPTAS

Fact: There is a 29(1/9) . n time PTAS for INDEPENDENT SET for
planar graphs.

qO Oo

» Let D :=1/e. For a fixed 0 < s < D, delete every layer L;
with i = s (mod D)

» The resulting graph is D-outerplanar, hence it has treewidth
at most 3D + 1 = O(1/e).

» Using the O(2" - n) time algorithm for INDEPENDENT SET,
the problem can be solved in time 20(1/€) . .

» We do this for every 0 < s < D: for at least one value of s,
we delete at most 1/D = e fraction of the solution = we get
a (1 + €)-approximate solution.



Back to FPT. ..



Bidimensionality

A powerful framework to obtain efficient algorithms on planar
graphs.

Let x(G) be some graph invariant (i.e., an integer associated with
each graph).
Some typical examples:

Maximum independent set size.

Minimum vertex cover size.

>

>

» Length of the longest path.

» Minimum dominating set size
>

Minimum feedback vertex set size.
Given G and k, we want to decide if x(G) < k (or x(G) > k).

For many natural invariants, we can do this in time 20(‘/E) .o,



BIDIMENSIONALITY FOR VERTEX COVER

Hy , for r =10



Bidimensionality for Vertex Cover



Bidimensionality for
VERTEX COVER

Observation: If the treewidth of a planar graph G is at least 4v/2k
= It contains a v/2k x v/2k grid minor (Excluded Grid Theorem
for planar graphs)

=- The vertex cover size of the grid is at least k in the grid

= Vertex cover size is at least k in G.

We use this observation to solve VERTEX COVER on planar
graphs as follows:

> Set w = 4V 2k.
» Use the 4-approximation tree decomposition algorithm
> If treewidth is at least w: we answer 'vertex cover is > k'.

> If we get a tree decomposition of width 4w, then we can solve
the problem in time 2% - nO(1) = 20(Vk) . O(1),



Bidimensionality (cont.)

Definition: A graph invariant x(G) is minor-bidimensional if
» x(G’) < x(G) for every minor G’ of G, and

> If Gy is the k x k grid, then x(Gy) > ck? (for some constant
c>0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.
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Bidimensionality (cont.)

Definition: A graph invariant x(G) is minor-bidimensional if
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c>0).

Examples: minimum vertex cover, length of the longest path,
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Bidimensionality (cont.)

We can answer “x(G) > k7" for a minor-bidimensional parameter
the following way:

» Set w := cv/k for an appropriate constant c.
» Use the 4-approximation tree decomposition algorithm.

» If treewidth is at least w: x(G) is at least k.

> If we get a tree decomposition of width 4w, then we can solve
the problem using dynamic programming on the tree
decomposition.

Running time:
» If we can solve the problem using a width w tree

decomposition in time 29(") . n9(1) | then the running time is
20(Vk) . O(1)

» If we can solve the problem using a width w tree
decomposition in time wOW) . nO(1) then the running time is
2O0(Vklogk) . ,O(1)



Summary

» Notion of treewidth allows us to generalize dynamic
programming on trees to more general graphs.

» Standard techniques for designing algorithms on bounded
treewidth graphs: dynamic programming and Courcelle's
Theorem.

» Surprising uses of treewidth in other contexts (planar graphs).
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