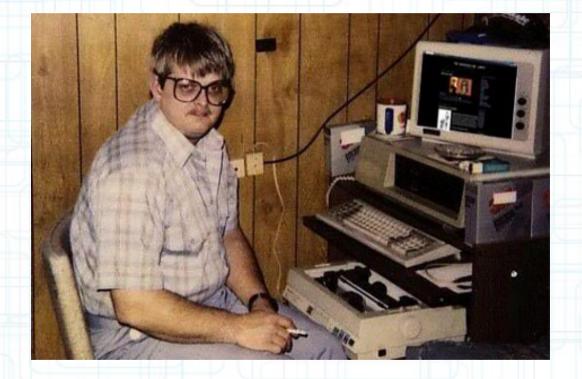
Bioinformatics for biologists

Making sense of the Next Generation Sequencing data

Konstantin Okonechnikov Max Planck Institute For Infection Biology

Летняя школа биоинформатики Москва, 2013

Objectives


- Learn about skills required for in-lab bioinformatics
- Learn about resources and tools in the area of NGS data analysis
- Start acquiring the bioinformatics skills by example of RNA-seq experiment analysis

Who are bioinformaticians?

Seen by the boss

COTH

Seen by biologists

Seen by other bioinformatician

Who are bioinformaticians?

 Bioinformatics: a union of scientific disciplines and a set of skills

Scientific and other disciplines

- What to learn:
 - Algorithms and programming
 - Statistics and data analysis
 - Biology
 - English
- How to learn:
 - Go to university
 - Read books and papers
 - MOE: Coursera, edX, etc

Skills: operating systems

- Windows
 - Mostly commercial software (CLCBio etc)
- Unix-based
 - Most popular bioinformatics tools are available only here
 - A lot of useful commands available by default

Skills: programming languages

- Be problem oriented
- Best general choice: R, Python
 - Available everywhere
 - Easy to learn: link to resources
 - A lot of libraries available (e.g. Bioconductor, Biopython)

Skills: understanding the data

- Data formats: flat-files, XML, etc.. (some links required)
- Data acquisition
 - Databases
 - Raw data
- Data manipulation:
 - Get subsets
 - Clean-up
 - Conversion

Skills: searching for answers

- Somebody already knows the answer
- Places to look:
 - Google
 - Biostar.org (Bioinformatics in general)
 - SeqAnsewrs (NGS)
 - <your favorite forum here>

Tools: data sources

- Big databases
 - NCBI (sequences, genes, proteins, ontologies etc...)
 - Ensembl (mostly genomes and annotations)
- Learn APIs to access from code:
 - REST
 - Http requests...

Tools: algorithms

- Area specific
- To use best tools read papers:
 - Bioinformatics, Nature methods, etc
 - http://seqanswers.com/wiki/Software/list
- Example: Whole Genome Seq
 - Bwa, Samtools
- Example 2: RNA-seq tuxedo pipeline
- Example 3: < your example here >

Tools: visualization

- Genome browsers
 - UCSC
- Sequence and alignment viewer
 - IGV
 - Tablet
 - Unipro UGENE
- Other tools

Tools: workflow management

- Goal: better maintenance, visualization, reproducibility
- Big frameworks:
 - Galaxy
 - Taverna
 - Unipro UGENE
 - Knime

Demonstration: Unipro UGENE

- Website:
 - http://ugene.unipro.ru/
- Demonstration and data:
- Pluses: looks sexy, free, available for many platforms
- Minues: bugs are possible

Demonstration: Galaxy

- Website:
 - http://usegalaxy.org/
- Pluses: available from web, established community
- Minuses: difficult to debug, can not upload big data – local installation and setup is required

Demonstration: simple RNA-seq analysis

- Turorial from J. Goecks from Galaxy communty:
- Gene expression studies

https://main.g2.bx.psu.edu/u/jeremy/p/galaxy-rna-seq-analysis-exercise

Спасибо за внимание!